An efficient pattern mining approach for event detection in multivariate temporal data
This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present recent temporal pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach...
Gespeichert in:
Veröffentlicht in: | Knowledge and information systems 2016-01, Vol.46 (1), p.115-150 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work proposes a pattern mining approach to learn event detection models from complex multivariate temporal data, such as electronic health records. We present recent temporal pattern mining, a novel approach for efficiently finding predictive patterns for event detection problems. This approach first converts the time series data into time-interval sequences of temporal abstractions. It then constructs more complex time-interval patterns backward in time using temporal operators. We also present the minimal predictive recent temporal patterns framework for selecting a small set of predictive and non-spurious patterns. We apply our methods for predicting adverse medical events in real-world clinical data. The results demonstrate the benefits of our methods in learning accurate event detection models, which is a key step for developing intelligent patient monitoring and decision support systems. |
---|---|
ISSN: | 0219-1377 0219-3116 |
DOI: | 10.1007/s10115-015-0819-6 |