CauloBrowser: A systems biology resource for Caulobacter crescentus

Caulobacter crescentus is a premier model organism for studying the molecular basis of cellular asymmetry. The Caulobacter community has generated a wealth of high-throughput spatiotemporal databases including data from gene expression profiling experiments (microarrays, RNA-seq, ChIP-seq, ribosome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2016-01, Vol.44 (D1), p.D640-D645
Hauptverfasser: Lasker, Keren, Schrader, Jared M, Men, Yifei, Marshik, Tyler, Dill, David L, McAdams, Harley H, Shapiro, Lucy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caulobacter crescentus is a premier model organism for studying the molecular basis of cellular asymmetry. The Caulobacter community has generated a wealth of high-throughput spatiotemporal databases including data from gene expression profiling experiments (microarrays, RNA-seq, ChIP-seq, ribosome profiling, LC-ms proteomics), gene essentiality studies (Tn-seq), genome wide protein localization studies, and global chromosome methylation analyses (SMRT sequencing). A major challenge involves the integration of these diverse data sets into one comprehensive community resource. To address this need, we have generated CauloBrowser (www.caulobrowser.org), an online resource for Caulobacter studies. This site provides a user-friendly interface for quickly searching genes of interest and downloading genome-wide results. Search results about individual genes are displayed as tables, graphs of time resolved expression profiles, and schematics of protein localization throughout the cell cycle. In addition, the site provides a genome viewer that enables customizable visualization of all published high-throughput genomic data. The depth and diversity of data sets collected by the Caulobacter community makes CauloBrowser a unique and valuable systems biology resource.
ISSN:0305-1048
1362-4962
DOI:10.1093/nar/gkv1050