The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids

The epithelial lining of the fallopian tube is of critical importance for human reproduction and has been implicated as a site of origin of high-grade serous ovarian cancer. Here we report on the establishment of long-term, stable 3D organoid cultures from human fallopian tubes, indicative of the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-12, Vol.6 (1), p.8989-8989, Article 8989
Hauptverfasser: Kessler, Mirjana, Hoffmann, Karen, Brinkmann, Volker, Thieck, Oliver, Jackisch, Susan, Toelle, Benjamin, Berger, Hilmar, Mollenkopf, Hans-Joachim, Mangler, Mandy, Sehouli, Jalid, Fotopoulou, Christina, Meyer, Thomas F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The epithelial lining of the fallopian tube is of critical importance for human reproduction and has been implicated as a site of origin of high-grade serous ovarian cancer. Here we report on the establishment of long-term, stable 3D organoid cultures from human fallopian tubes, indicative of the presence of adult stem cells. We show that single epithelial stem cells in vitro can give rise to differentiated organoids containing ciliated and secretory cells. Continuous growth and differentiation of organoids depend on both Wnt and Notch paracrine signalling. Microarray analysis reveals that inhibition of Notch signalling causes downregulation of stem cell-associated genes in parallel with decreased proliferation and increased numbers of ciliated cells and that organoids also respond to oestradiol and progesterone treatment in a physiological manner. Thus, our organoid model provides a much-needed basis for future investigations of signalling routes involved in health and disease of the fallopian tube. The mechanisms underlying fallopian tube epithelial renewal are unclear. Here, Kessler et al. isolate adult stem cells from the human fallopian tube epithelium and generate 3D organoids from these cells in vitro that have a similar architecture to that of the fallopian tube.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9989