Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis
Rap1-GTP activates leukocyte function-associated antigen-1 (LFA-1) to induce arrest on the high endothelial venule (HEV). Here we show that Rap1-GDP restrains rolling behaviours of T cells on the peripheral lymph node addressin (PNAd), P-selectin and mucosal addressin cell adhesion molecule-1 (MadCA...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-12, Vol.6 (1), p.8982-8982, Article 8982 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rap1-GTP activates leukocyte function-associated antigen-1 (LFA-1) to induce arrest on the high endothelial venule (HEV). Here we show that Rap1-GDP restrains rolling behaviours of T cells on the peripheral lymph node addressin (PNAd), P-selectin and mucosal addressin cell adhesion molecule-1 (MadCAM-1) by inhibiting tether formation. Consequently, Rap1 deficiency impairs homing of naive T cells to peripheral lymph nodes, but accelerates homing of T
H
17 and T
H
1 cells to the colon, resulting in spontaneous colitis with tumours. Rap1-GDP associates with and activates lymphocyte-oriented kinase, which phosphorylates ERM (ezrin, radixin and moesin) in resting T cells. Phosphomimetic ezrin reduces the rolling of Rap1-deficient cells, and thereby decreases their homing into the colon. On the other hand, chemokines activate Rap1 at the plasma membrane within seconds, and Rap1-GTP binds to filamins, which diminishes its association with the β
2
chain of LFA-1 and results in LFA-1 activation. This Rap1-dependent regulation of T-cell circulation prevents the onset of colitis.
Rap1, a member of the Ras family of small guanine triphosphatases, mediates lymphocyte adhesion to high endothelial venules. Here the authors show that depending on its activation status Rap1 plays a dual role in T cell adhesion and by regulating T cell homeostasis is involved in the protection from colitis. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9982 |