Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin

New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-12, Vol.6 (1), p.10048-10048, Article 10048
Hauptverfasser: Chan, Pan F., Srikannathasan, Velupillai, Huang, Jianzhong, Cui, Haifeng, Fosberry, Andrew P., Gu, Minghua, Hann, Michael M., Hibbs, Martin, Homes, Paul, Ingraham, Karen, Pizzollo, Jason, Shen, Carol, Shillings, Anthony J., Spitzfaden, Claus E., Tanner, Robert, Theobald, Andrew J., Stavenger, Robert A., Bax, Benjamin D., Gwynn, Michael N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New antibacterials are needed to tackle antibiotic-resistant bacteria. Type IIA topoisomerases (topo2As), the targets of fluoroquinolones, regulate DNA topology by creating transient double-strand DNA breaks. Here we report the first co-crystal structures of the antibacterial QPT-1 and the anticancer drug etoposide with Staphylococcus aureus DNA gyrase, showing binding at the same sites in the cleaved DNA as the fluoroquinolone moxifloxacin. Unlike moxifloxacin, QPT-1 and etoposide interact with conserved GyrB TOPRIM residues rationalizing why QPT-1 can overcome fluoroquinolone resistance. Our data show etoposide’s antibacterial activity is due to DNA gyrase inhibition and suggests other anticancer agents act similarly. Analysis of multiple DNA gyrase co-crystal structures, including asymmetric cleavage complexes, led to a ‘pair of swing-doors’ hypothesis in which the movement of one DNA segment regulates cleavage and religation of the second DNA duplex. This mechanism can explain QPT-1’s bacterial specificity. Structure-based strategies for developing topo2A antibacterials are suggested. Type IIA topoisomerases (topo2As) create transient double-strand DNA breaks. Here, the authors report structures showing how QPT-1 binds in the DNA/topo2A complex at the same site as the fluoroquinolone moxifloxacin, and discuss the potential for developing new classes of antibiotics.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms10048