Tissue and urokinase plasminogen activators instigate the degeneration of retinal ganglion cells in a mouse model of glaucoma

Elevated intraocular pressure (IOP) promotes the degeneration of retinal ganglion cells (RGCs) during the progression of Primary Open-Angle Glaucoma (POAG). However, the molecular mechanisms underpinning IOP-mediated degeneration of RGCs remain unclear. Therefore, by employing a mouse model of POAG,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental eye research 2016-02, Vol.143, p.17-27
1. Verfasser: Chintala, Shravan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elevated intraocular pressure (IOP) promotes the degeneration of retinal ganglion cells (RGCs) during the progression of Primary Open-Angle Glaucoma (POAG). However, the molecular mechanisms underpinning IOP-mediated degeneration of RGCs remain unclear. Therefore, by employing a mouse model of POAG, this study examined whether elevated IOP promotes the degeneration of RGCs by up-regulating tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) in the retina. IOP was elevated in mouse eyes by injecting fluorescent-microbeads into the anterior chamber. Once a week, for eight weeks, IOP in mouse eyes was measured by using Tono-Pen XL. At various time periods after injecting microbeads, proteolytic activity of tPA and uPA in retinal protein extracts was determined by fibrinogen/plasminogen zymography assays. Localization of tPA and uPA, and their receptor LRP-1 (low-density receptor-related protein-1) in the retina was determined by immunohistochemistry. RGCs' degeneration was assessed by immunostaining with antibodies against Brn3a. Injection of microbeads into the anterior chamber led to a progressive elevation in IOP, increased the proteolytic activity of tPA and uPA in the retina, activated plasminogen into plasmin, and promoted a significant degeneration of RGCs. Elevated IOP up-regulated tPA and LRP-1 in RGCs, and uPA in astrocytes. At four weeks after injecting microbeads, RAP (receptor associated protein; 0.5 and 1.0 μM) or tPA-Stop (1.0 and 4.0 μM) was injected into the vitreous humor. Treatment of IOP-elevated eyes with RAP led to a significant decrease in proteolytic activity of both tPA and uPA, and a significant decrease in IOP-mediated degeneration of RGCs. Also, treatment of IOP-elevated eyes with tPA-Stop decreased the proteolytic activity of both tPA and uPA, and, in turn, significantly attenuated IOP-mediated degeneration of RGCs. Results presented in this study provide evidence that elevated IOP promotes the degeneration of RGCs by up-regulating the levels of proteolytically active tPA and uPA. •The mechanisms underlying IOP-mediated degeneration of retinal ganglion cells (RGCs) is unclear.•This study investigated whether plasminogen activators play a role in RGC degeneration in a mouse model of POAG.•IOP elevation led to an up-regulation in tissue plasminogen activator (tPA), urokinase plasminogen activator (uPA), and their receptor LRP-1, and promoted significant degeneration of RGCs.•Inhibition of tPA and uPA binding
ISSN:0014-4835
1096-0007
DOI:10.1016/j.exer.2015.10.003