Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community

The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2016-01, Vol.10 (1), p.210-224
Hauptverfasser: Beam, Jacob P, Jay, Zackary J, Schmid, Markus C, Rusch, Douglas B, Romine, Margaret F, M Jennings, Ryan de, Kozubal, Mark A, Tringe, Susannah G, Wagner, Michael, Inskeep, William P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 1
container_start_page 210
container_title The ISME Journal
container_volume 10
creator Beam, Jacob P
Jay, Zackary J
Schmid, Markus C
Rusch, Douglas B
Romine, Margaret F
M Jennings, Ryan de
Kozubal, Mark A
Tringe, Susannah G
Wagner, Michael
Inskeep, William P
description The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ . Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo , which suggests auxotrophy. We propose the name Candidatus ‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.
doi_str_mv 10.1038/ismej.2015.83
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4681859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3895122231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi1ERUvhyBVZcCWL7SSOc0GqqgKVKvVSzpbjTBKvEnuxnRV762PA6_VJcEhZFYmTx5pP__wzP0JvKNlQkouPJkyw3TBCy43In6EzWpU0q_KKPD_WnJ2ilyFsCSkrzqsX6JRxWpCS1Wdof6XdbjgE40bXH7DrsLJ4tnoeo9mrCC0ejQXVw9K6ML3yelDgosKdd9MCux9Gf8CDizjsvLE97syoJrDRzQE_3P8M0UP6-4f7X1i7aZqtiYdX6KRTY4DXj-85-vb56u7ya3Zz--X68uIm02VRxawlQtRCNC0rWl53mumcaMqbhhUVL9uuEZwSxaFMq1HI67bMOSjCgUFia5qfo0-r7m5uJmh1suXVKJPRSfmDdMrIfzvWDLJ3e1lwQUVZJ4F3q4AL0cigTQQ9aGct6CgpK-p06QS9f5zi3fcZQpRbN3ubFpO0KkRdUUHyRGUrpb0LwUN3tEGJXLKUf7KUS5ZSLPzbp96P9N_wErBZgfXw4J-M_a_ibzQOrx0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748971803</pqid></control><display><type>article</type><title>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Beam, Jacob P ; Jay, Zackary J ; Schmid, Markus C ; Rusch, Douglas B ; Romine, Margaret F ; M Jennings, Ryan de ; Kozubal, Mark A ; Tringe, Susannah G ; Wagner, Michael ; Inskeep, William P</creator><creatorcontrib>Beam, Jacob P ; Jay, Zackary J ; Schmid, Markus C ; Rusch, Douglas B ; Romine, Margaret F ; M Jennings, Ryan de ; Kozubal, Mark A ; Tringe, Susannah G ; Wagner, Michael ; Inskeep, William P ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ . Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo , which suggests auxotrophy. We propose the name Candidatus ‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2015.83</identifier><identifier>PMID: 26140529</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/32 ; 45/90 ; 45/91 ; 631/326/26/2527 ; Amino acids ; Archaea - classification ; Archaea - genetics ; Archaea - isolation &amp; purification ; Aromatic compounds ; BASIC BIOLOGICAL SCIENCES ; Biomedical and Life Sciences ; Dissolved organic carbon ; Ecology ; Ecophysiology ; Ecosystem ; Evolutionary Biology ; Genome, Archaeal ; Hot springs ; Hot Springs - analysis ; Hot Springs - microbiology ; In Situ Hybridization, Fluorescence ; Life Sciences ; Metagenomics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Molecular Sequence Data ; Original ; original-article ; Phylogeny ; Vitamins</subject><ispartof>The ISME Journal, 2016-01, Vol.10 (1), p.210-224</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016 International Society for Microbial Ecology 2016 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</citedby><cites>FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</cites><orcidid>0000-0002-9778-7684 ; 0000-0001-6479-8427 ; 0000000297787684 ; 0000000164798427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26140529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1249370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beam, Jacob P</creatorcontrib><creatorcontrib>Jay, Zackary J</creatorcontrib><creatorcontrib>Schmid, Markus C</creatorcontrib><creatorcontrib>Rusch, Douglas B</creatorcontrib><creatorcontrib>Romine, Margaret F</creatorcontrib><creatorcontrib>M Jennings, Ryan de</creatorcontrib><creatorcontrib>Kozubal, Mark A</creatorcontrib><creatorcontrib>Tringe, Susannah G</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Inskeep, William P</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ . Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo , which suggests auxotrophy. We propose the name Candidatus ‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.</description><subject>14/32</subject><subject>45/90</subject><subject>45/91</subject><subject>631/326/26/2527</subject><subject>Amino acids</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation &amp; purification</subject><subject>Aromatic compounds</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomedical and Life Sciences</subject><subject>Dissolved organic carbon</subject><subject>Ecology</subject><subject>Ecophysiology</subject><subject>Ecosystem</subject><subject>Evolutionary Biology</subject><subject>Genome, Archaeal</subject><subject>Hot springs</subject><subject>Hot Springs - analysis</subject><subject>Hot Springs - microbiology</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular Sequence Data</subject><subject>Original</subject><subject>original-article</subject><subject>Phylogeny</subject><subject>Vitamins</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkcFu1DAQhi1ERUvhyBVZcCWL7SSOc0GqqgKVKvVSzpbjTBKvEnuxnRV762PA6_VJcEhZFYmTx5pP__wzP0JvKNlQkouPJkyw3TBCy43In6EzWpU0q_KKPD_WnJ2ilyFsCSkrzqsX6JRxWpCS1Wdof6XdbjgE40bXH7DrsLJ4tnoeo9mrCC0ejQXVw9K6ML3yelDgosKdd9MCux9Gf8CDizjsvLE97syoJrDRzQE_3P8M0UP6-4f7X1i7aZqtiYdX6KRTY4DXj-85-vb56u7ya3Zz--X68uIm02VRxawlQtRCNC0rWl53mumcaMqbhhUVL9uuEZwSxaFMq1HI67bMOSjCgUFia5qfo0-r7m5uJmh1suXVKJPRSfmDdMrIfzvWDLJ3e1lwQUVZJ4F3q4AL0cigTQQ9aGct6CgpK-p06QS9f5zi3fcZQpRbN3ubFpO0KkRdUUHyRGUrpb0LwUN3tEGJXLKUf7KUS5ZSLPzbp96P9N_wErBZgfXw4J-M_a_ibzQOrx0</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Beam, Jacob P</creator><creator>Jay, Zackary J</creator><creator>Schmid, Markus C</creator><creator>Rusch, Douglas B</creator><creator>Romine, Margaret F</creator><creator>M Jennings, Ryan de</creator><creator>Kozubal, Mark A</creator><creator>Tringe, Susannah G</creator><creator>Wagner, Michael</creator><creator>Inskeep, William P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9778-7684</orcidid><orcidid>https://orcid.org/0000-0001-6479-8427</orcidid><orcidid>https://orcid.org/0000000297787684</orcidid><orcidid>https://orcid.org/0000000164798427</orcidid></search><sort><creationdate>20160101</creationdate><title>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</title><author>Beam, Jacob P ; Jay, Zackary J ; Schmid, Markus C ; Rusch, Douglas B ; Romine, Margaret F ; M Jennings, Ryan de ; Kozubal, Mark A ; Tringe, Susannah G ; Wagner, Michael ; Inskeep, William P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14/32</topic><topic>45/90</topic><topic>45/91</topic><topic>631/326/26/2527</topic><topic>Amino acids</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation &amp; purification</topic><topic>Aromatic compounds</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomedical and Life Sciences</topic><topic>Dissolved organic carbon</topic><topic>Ecology</topic><topic>Ecophysiology</topic><topic>Ecosystem</topic><topic>Evolutionary Biology</topic><topic>Genome, Archaeal</topic><topic>Hot springs</topic><topic>Hot Springs - analysis</topic><topic>Hot Springs - microbiology</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular Sequence Data</topic><topic>Original</topic><topic>original-article</topic><topic>Phylogeny</topic><topic>Vitamins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beam, Jacob P</creatorcontrib><creatorcontrib>Jay, Zackary J</creatorcontrib><creatorcontrib>Schmid, Markus C</creatorcontrib><creatorcontrib>Rusch, Douglas B</creatorcontrib><creatorcontrib>Romine, Margaret F</creatorcontrib><creatorcontrib>M Jennings, Ryan de</creatorcontrib><creatorcontrib>Kozubal, Mark A</creatorcontrib><creatorcontrib>Tringe, Susannah G</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Inskeep, William P</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beam, Jacob P</au><au>Jay, Zackary J</au><au>Schmid, Markus C</au><au>Rusch, Douglas B</au><au>Romine, Margaret F</au><au>M Jennings, Ryan de</au><au>Kozubal, Mark A</au><au>Tringe, Susannah G</au><au>Wagner, Michael</au><au>Inskeep, William P</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>10</volume><issue>1</issue><spage>210</spage><epage>224</epage><pages>210-224</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and in situ transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the in situ metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence in situ hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous Thermocrinis spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed in situ . Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins de novo , which suggests auxotrophy. We propose the name Candidatus ‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26140529</pmid><doi>10.1038/ismej.2015.83</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9778-7684</orcidid><orcidid>https://orcid.org/0000-0001-6479-8427</orcidid><orcidid>https://orcid.org/0000000297787684</orcidid><orcidid>https://orcid.org/0000000164798427</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2016-01, Vol.10 (1), p.210-224
issn 1751-7362
1751-7370
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4681859
source Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 14/32
45/90
45/91
631/326/26/2527
Amino acids
Archaea - classification
Archaea - genetics
Archaea - isolation & purification
Aromatic compounds
BASIC BIOLOGICAL SCIENCES
Biomedical and Life Sciences
Dissolved organic carbon
Ecology
Ecophysiology
Ecosystem
Evolutionary Biology
Genome, Archaeal
Hot springs
Hot Springs - analysis
Hot Springs - microbiology
In Situ Hybridization, Fluorescence
Life Sciences
Metagenomics
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Molecular Sequence Data
Original
original-article
Phylogeny
Vitamins
title Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecophysiology%20of%20an%20uncultivated%20lineage%20of%20Aigarchaeota%20from%20an%20oxic,%20hot%20spring%20filamentous%20%E2%80%98streamer%E2%80%99%20community&rft.jtitle=The%20ISME%20Journal&rft.au=Beam,%20Jacob%20P&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2016-01-01&rft.volume=10&rft.issue=1&rft.spage=210&rft.epage=224&rft.pages=210-224&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2015.83&rft_dat=%3Cproquest_pubme%3E3895122231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1748971803&rft_id=info:pmid/26140529&rfr_iscdi=true