Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community
The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic pot...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2016-01, Vol.10 (1), p.210-224 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 1 |
container_start_page | 210 |
container_title | The ISME Journal |
container_volume | 10 |
creator | Beam, Jacob P Jay, Zackary J Schmid, Markus C Rusch, Douglas B Romine, Margaret F M Jennings, Ryan de Kozubal, Mark A Tringe, Susannah G Wagner, Michael Inskeep, William P |
description | The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and
in situ
transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the
in situ
metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence
in situ
hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous
Thermocrinis
spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed
in situ
. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins
de novo
, which suggests auxotrophy. We propose the name
Candidatus
‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen. |
doi_str_mv | 10.1038/ismej.2015.83 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4681859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3895122231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</originalsourceid><addsrcrecordid>eNptkcFu1DAQhi1ERUvhyBVZcCWL7SSOc0GqqgKVKvVSzpbjTBKvEnuxnRV762PA6_VJcEhZFYmTx5pP__wzP0JvKNlQkouPJkyw3TBCy43In6EzWpU0q_KKPD_WnJ2ilyFsCSkrzqsX6JRxWpCS1Wdof6XdbjgE40bXH7DrsLJ4tnoeo9mrCC0ejQXVw9K6ML3yelDgosKdd9MCux9Gf8CDizjsvLE97syoJrDRzQE_3P8M0UP6-4f7X1i7aZqtiYdX6KRTY4DXj-85-vb56u7ya3Zz--X68uIm02VRxawlQtRCNC0rWl53mumcaMqbhhUVL9uuEZwSxaFMq1HI67bMOSjCgUFia5qfo0-r7m5uJmh1suXVKJPRSfmDdMrIfzvWDLJ3e1lwQUVZJ4F3q4AL0cigTQQ9aGct6CgpK-p06QS9f5zi3fcZQpRbN3ubFpO0KkRdUUHyRGUrpb0LwUN3tEGJXLKUf7KUS5ZSLPzbp96P9N_wErBZgfXw4J-M_a_ibzQOrx0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1748971803</pqid></control><display><type>article</type><title>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Beam, Jacob P ; Jay, Zackary J ; Schmid, Markus C ; Rusch, Douglas B ; Romine, Margaret F ; M Jennings, Ryan de ; Kozubal, Mark A ; Tringe, Susannah G ; Wagner, Michael ; Inskeep, William P</creator><creatorcontrib>Beam, Jacob P ; Jay, Zackary J ; Schmid, Markus C ; Rusch, Douglas B ; Romine, Margaret F ; M Jennings, Ryan de ; Kozubal, Mark A ; Tringe, Susannah G ; Wagner, Michael ; Inskeep, William P ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and
in situ
transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the
in situ
metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence
in situ
hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous
Thermocrinis
spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed
in situ
. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins
de novo
, which suggests auxotrophy. We propose the name
Candidatus
‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.</description><identifier>ISSN: 1751-7362</identifier><identifier>EISSN: 1751-7370</identifier><identifier>DOI: 10.1038/ismej.2015.83</identifier><identifier>PMID: 26140529</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/32 ; 45/90 ; 45/91 ; 631/326/26/2527 ; Amino acids ; Archaea - classification ; Archaea - genetics ; Archaea - isolation & purification ; Aromatic compounds ; BASIC BIOLOGICAL SCIENCES ; Biomedical and Life Sciences ; Dissolved organic carbon ; Ecology ; Ecophysiology ; Ecosystem ; Evolutionary Biology ; Genome, Archaeal ; Hot springs ; Hot Springs - analysis ; Hot Springs - microbiology ; In Situ Hybridization, Fluorescence ; Life Sciences ; Metagenomics ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbiology ; Microorganisms ; Molecular Sequence Data ; Original ; original-article ; Phylogeny ; Vitamins</subject><ispartof>The ISME Journal, 2016-01, Vol.10 (1), p.210-224</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Nature Publishing Group Jan 2016</rights><rights>Copyright © 2016 International Society for Microbial Ecology 2016 International Society for Microbial Ecology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</citedby><cites>FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</cites><orcidid>0000-0002-9778-7684 ; 0000-0001-6479-8427 ; 0000000297787684 ; 0000000164798427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681859/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681859/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26140529$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1249370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beam, Jacob P</creatorcontrib><creatorcontrib>Jay, Zackary J</creatorcontrib><creatorcontrib>Schmid, Markus C</creatorcontrib><creatorcontrib>Rusch, Douglas B</creatorcontrib><creatorcontrib>Romine, Margaret F</creatorcontrib><creatorcontrib>M Jennings, Ryan de</creatorcontrib><creatorcontrib>Kozubal, Mark A</creatorcontrib><creatorcontrib>Tringe, Susannah G</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Inskeep, William P</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</title><title>The ISME Journal</title><addtitle>ISME J</addtitle><addtitle>ISME J</addtitle><description>The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and
in situ
transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the
in situ
metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence
in situ
hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous
Thermocrinis
spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed
in situ
. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins
de novo
, which suggests auxotrophy. We propose the name
Candidatus
‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.</description><subject>14/32</subject><subject>45/90</subject><subject>45/91</subject><subject>631/326/26/2527</subject><subject>Amino acids</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - isolation & purification</subject><subject>Aromatic compounds</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biomedical and Life Sciences</subject><subject>Dissolved organic carbon</subject><subject>Ecology</subject><subject>Ecophysiology</subject><subject>Ecosystem</subject><subject>Evolutionary Biology</subject><subject>Genome, Archaeal</subject><subject>Hot springs</subject><subject>Hot Springs - analysis</subject><subject>Hot Springs - microbiology</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Life Sciences</subject><subject>Metagenomics</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Molecular Sequence Data</subject><subject>Original</subject><subject>original-article</subject><subject>Phylogeny</subject><subject>Vitamins</subject><issn>1751-7362</issn><issn>1751-7370</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkcFu1DAQhi1ERUvhyBVZcCWL7SSOc0GqqgKVKvVSzpbjTBKvEnuxnRV762PA6_VJcEhZFYmTx5pP__wzP0JvKNlQkouPJkyw3TBCy43In6EzWpU0q_KKPD_WnJ2ilyFsCSkrzqsX6JRxWpCS1Wdof6XdbjgE40bXH7DrsLJ4tnoeo9mrCC0ejQXVw9K6ML3yelDgosKdd9MCux9Gf8CDizjsvLE97syoJrDRzQE_3P8M0UP6-4f7X1i7aZqtiYdX6KRTY4DXj-85-vb56u7ya3Zz--X68uIm02VRxawlQtRCNC0rWl53mumcaMqbhhUVL9uuEZwSxaFMq1HI67bMOSjCgUFia5qfo0-r7m5uJmh1suXVKJPRSfmDdMrIfzvWDLJ3e1lwQUVZJ4F3q4AL0cigTQQ9aGct6CgpK-p06QS9f5zi3fcZQpRbN3ubFpO0KkRdUUHyRGUrpb0LwUN3tEGJXLKUf7KUS5ZSLPzbp96P9N_wErBZgfXw4J-M_a_ibzQOrx0</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Beam, Jacob P</creator><creator>Jay, Zackary J</creator><creator>Schmid, Markus C</creator><creator>Rusch, Douglas B</creator><creator>Romine, Margaret F</creator><creator>M Jennings, Ryan de</creator><creator>Kozubal, Mark A</creator><creator>Tringe, Susannah G</creator><creator>Wagner, Michael</creator><creator>Inskeep, William P</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9778-7684</orcidid><orcidid>https://orcid.org/0000-0001-6479-8427</orcidid><orcidid>https://orcid.org/0000000297787684</orcidid><orcidid>https://orcid.org/0000000164798427</orcidid></search><sort><creationdate>20160101</creationdate><title>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</title><author>Beam, Jacob P ; Jay, Zackary J ; Schmid, Markus C ; Rusch, Douglas B ; Romine, Margaret F ; M Jennings, Ryan de ; Kozubal, Mark A ; Tringe, Susannah G ; Wagner, Michael ; Inskeep, William P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-d088988bd24d69fc2c30c16bb24765dfb8610a6e50051e39d536ea06e2ec2c913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>14/32</topic><topic>45/90</topic><topic>45/91</topic><topic>631/326/26/2527</topic><topic>Amino acids</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - isolation & purification</topic><topic>Aromatic compounds</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biomedical and Life Sciences</topic><topic>Dissolved organic carbon</topic><topic>Ecology</topic><topic>Ecophysiology</topic><topic>Ecosystem</topic><topic>Evolutionary Biology</topic><topic>Genome, Archaeal</topic><topic>Hot springs</topic><topic>Hot Springs - analysis</topic><topic>Hot Springs - microbiology</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Life Sciences</topic><topic>Metagenomics</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Molecular Sequence Data</topic><topic>Original</topic><topic>original-article</topic><topic>Phylogeny</topic><topic>Vitamins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beam, Jacob P</creatorcontrib><creatorcontrib>Jay, Zackary J</creatorcontrib><creatorcontrib>Schmid, Markus C</creatorcontrib><creatorcontrib>Rusch, Douglas B</creatorcontrib><creatorcontrib>Romine, Margaret F</creatorcontrib><creatorcontrib>M Jennings, Ryan de</creatorcontrib><creatorcontrib>Kozubal, Mark A</creatorcontrib><creatorcontrib>Tringe, Susannah G</creatorcontrib><creatorcontrib>Wagner, Michael</creatorcontrib><creatorcontrib>Inskeep, William P</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beam, Jacob P</au><au>Jay, Zackary J</au><au>Schmid, Markus C</au><au>Rusch, Douglas B</au><au>Romine, Margaret F</au><au>M Jennings, Ryan de</au><au>Kozubal, Mark A</au><au>Tringe, Susannah G</au><au>Wagner, Michael</au><au>Inskeep, William P</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community</atitle><jtitle>The ISME Journal</jtitle><stitle>ISME J</stitle><addtitle>ISME J</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>10</volume><issue>1</issue><spage>210</spage><epage>224</epage><pages>210-224</pages><issn>1751-7362</issn><eissn>1751-7370</eissn><abstract>The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and
in situ
transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the
in situ
metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence
in situ
hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous
Thermocrinis
spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed
in situ
. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins
de novo
, which suggests auxotrophy. We propose the name
Candidatus
‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26140529</pmid><doi>10.1038/ismej.2015.83</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9778-7684</orcidid><orcidid>https://orcid.org/0000-0001-6479-8427</orcidid><orcidid>https://orcid.org/0000000297787684</orcidid><orcidid>https://orcid.org/0000000164798427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7362 |
ispartof | The ISME Journal, 2016-01, Vol.10 (1), p.210-224 |
issn | 1751-7362 1751-7370 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4681859 |
source | Oxford Journals Open Access Collection; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | 14/32 45/90 45/91 631/326/26/2527 Amino acids Archaea - classification Archaea - genetics Archaea - isolation & purification Aromatic compounds BASIC BIOLOGICAL SCIENCES Biomedical and Life Sciences Dissolved organic carbon Ecology Ecophysiology Ecosystem Evolutionary Biology Genome, Archaeal Hot springs Hot Springs - analysis Hot Springs - microbiology In Situ Hybridization, Fluorescence Life Sciences Metagenomics Microbial Ecology Microbial Genetics and Genomics Microbiology Microorganisms Molecular Sequence Data Original original-article Phylogeny Vitamins |
title | Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A58%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ecophysiology%20of%20an%20uncultivated%20lineage%20of%20Aigarchaeota%20from%20an%20oxic,%20hot%20spring%20filamentous%20%E2%80%98streamer%E2%80%99%20community&rft.jtitle=The%20ISME%20Journal&rft.au=Beam,%20Jacob%20P&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2016-01-01&rft.volume=10&rft.issue=1&rft.spage=210&rft.epage=224&rft.pages=210-224&rft.issn=1751-7362&rft.eissn=1751-7370&rft_id=info:doi/10.1038/ismej.2015.83&rft_dat=%3Cproquest_pubme%3E3895122231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1748971803&rft_id=info:pmid/26140529&rfr_iscdi=true |