Ecophysiology of an uncultivated lineage of Aigarchaeota from an oxic, hot spring filamentous ‘streamer’ community
The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic pot...
Gespeichert in:
Veröffentlicht in: | The ISME Journal 2016-01, Vol.10 (1), p.210-224 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The candidate archaeal phylum ‘Aigarchaeota’ contains microorganisms from terrestrial and subsurface geothermal ecosystems. The phylogeny and metabolic potential of Aigarchaeota has been deduced from several recent single-cell amplified genomes; however, a detailed description of their metabolic potential and
in situ
transcriptional activity is absent. Here, we report a comprehensive metatranscriptome-based reconstruction of the
in situ
metabolism of Aigarchaeota in an oxic, hot spring filamentous ‘streamer’ community. Fluorescence
in situ
hybridization showed that these newly discovered Aigarchaeota are filamentous, which is consistent with the presence and transcription of an actin-encoding gene. Aigarchaeota filaments are intricately associated with other community members, which include both bacteria (for example, filamentous
Thermocrinis
spp.) and archaea. Metabolic reconstruction of genomic and metatranscriptomic data suggests that this aigarchaeon is an aerobic, chemoorganoheterotroph with autotrophic potential. A heme copper oxidase complex was identified in the environmental genome assembly and highly transcribed
in situ
. Potential electron donors include acetate, fatty acids, amino acids, sugars and aromatic compounds, which may originate from extracellular polymeric substances produced by other microorganisms shown to exist in close proximity and/or autochthonous dissolved organic carbon (OC). Transcripts related to genes specific to each of these potential electron donors were identified, indicating that this aigarchaeon likely utilizes several OC substrates. Characterized members of this lineage cannot synthesize heme, and other cofactors and vitamins
de novo
, which suggests auxotrophy. We propose the name
Candidatus
‘Calditenuis aerorheumensis’ for this aigarchaeon, which describes its filamentous morphology and its primary electron acceptor, oxygen. |
---|---|
ISSN: | 1751-7362 1751-7370 |
DOI: | 10.1038/ismej.2015.83 |