Spontaneous Helical Structure Formation in Laminin Nanofibers
Laminin is a cross-shaped heterotrimer composed of three polypeptides chains that assembles into an insoluble extracellular matrix (ECM) network as part of the basement membrane, serving a vital role in many processes such as embryonic development, differentiation, and muscle and nerve regeneration....
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2015-01, Vol.3 (40), p.7993-8000 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laminin is a cross-shaped heterotrimer composed of three polypeptides chains that assembles into an insoluble extracellular matrix (ECM) network as part of the basement membrane, serving a vital role in many processes such as embryonic development, differentiation, and muscle and nerve regeneration. Here we engineered monodisperse laminin nanofibers using a surface-initiated assembly technique in order to investigate how changes in protein composition affect formation and structure of the network. Specifically, we compared laminin 111 with varying degrees of purity and with and without entactin to determine whether these changes alter biophysical properties. All the laminin types were reproducibly patterned as 200 μm long, 20 μm wide nanofibers that were successfuly released during surface-initiated assembly into solution. All nanofibers contracted upon release, and while initial lengths were identical, lengths of released fibers depended on the laminin type. Uniquely, the laminin 111 at high purity (>95%) and without entactin spontaneouly formed helical nanofibers at greater than 90%. Atomic force microscopy revealed that the nanofiber contraction was associated with a change in nanostructure from fibrillar to nodular, suggestive of refolding of laminin molecules into a globular-like conformation. Further, for the high purity laminin that formed helices, the density of the laminin at the edges of the nanofiber was higher than in the middle, providing a possible origin for the differential pre-stress driving the helix formation. Together, these results show that variation in the purity of laminin 111 and presence of entactin can have significant impact on the biophysical properties of the assembled protein networks. This highlights the fact that our understanding of protein assembly and function is still incomplete and that cell-free, in vitro assays can provide unique insights into the ECM. |
---|---|
ISSN: | 2050-750X 2050-7518 2050-7518 |
DOI: | 10.1039/c5tb01003a |