A Wide-angle Multi-Octave Broadband Waveplate Based on Field Transformation Approach

Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-12, Vol.5 (1), p.17532-17532, Article 17532
Hauptverfasser: Zhao, Junming, Zhang, Lianhong, Li, Jensen, Feng, Yijun, Dyke, Amy, Haq, Sajad, Hao, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transformation optics (TO) offers a geometrical approach in designing optical components of any shapes. Although it has been proven to be a versatile and robust mathematical tool, TO has, however, limited control over electromagnetic (EM) field polarization in the process of coordinate transformation. Such a technique can be extended to a so-called “Field transformation (FT)” which provides direct control over the impedance and polarization signature of an arbitrary object. In this work, we demonstrate a FT application by designing and manufacturing a novel waveplate, which defies the fundamental limit of bandwidth and incident angles and has the ability of converting between TE (transverse electric) and TM (transverse magnetic) as well as LCP (left-handed circular polarization) and RCP (right-handed circular polarization). Such a waveplate can also be applied to different operating modes for both transmitted and reflected waves by adjusting its thickness and adding an optional metallic ground plane. The proposed design approach presents a remarkable degree of advance for designing future devices with arbitrary polarization controls, artificial waveguides or antenna substrates and polarization-enabled resonators with angle-insensitive functionalities. Our approach has far reaching implications applicable from radio to optical frequencies.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep17532