Stabilization of Cu(I) for binding and calorimetric measurements in aqueous solution
Conditions have been developed for the comproportionation reaction of Cu(2+) and copper metal to prepare aqueous solutions of Cu(+) that are stabilized from disproportionation by MeCN and other Cu(+)-stabilizing ligands. These solutions were then used in ITC measurements to quantify the thermodynami...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2015-10, Vol.44 (37), p.16494-16505 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conditions have been developed for the comproportionation reaction of Cu(2+) and copper metal to prepare aqueous solutions of Cu(+) that are stabilized from disproportionation by MeCN and other Cu(+)-stabilizing ligands. These solutions were then used in ITC measurements to quantify the thermodynamics of formation of a set of Cu(+) complexes (Cu(I)(MeCN)3(+), Cu(I)Me6Trien(+), Cu(I)(BCA)2(3-), Cu(I)(BCS)2(3-)), which have stabilities ranging over 15 orders of magnitude, for their use in binding and calorimetric measurements of Cu(+) interaction with proteins and other biological macromolecules. These complexes were then used to determine the stability and thermodynamics of formation of a 1 : 1 complex of Cu(+) with the biologically important tri-peptide glutathione, GSH. These results identify Me6Trien as an attractive Cu(+)-stabilizing ligand for calorimetric experiments, and suggest that caution should be used with MeCN to stabilize Cu(+) due to its potential for participating in unquantifiable ternary interactions. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c5dt02689j |