Differential expression of galanin in the cholinergic basal forebrain of patients with Lewy body disorders
Depletion of cholinergic neurons within the nucleus basalis of Meynert (nbM) is thought to contribute to the development of cognitive impairments in both Alzheimer's disease (AD) and Lewy body disorders (LBD). It has been reported that, in late stage AD, a network of fibres that contain the neu...
Gespeichert in:
Veröffentlicht in: | Acta neuropathologica communications 2015-12, Vol.3 (1), p.77-77, Article 77 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Depletion of cholinergic neurons within the nucleus basalis of Meynert (nbM) is thought to contribute to the development of cognitive impairments in both Alzheimer's disease (AD) and Lewy body disorders (LBD). It has been reported that, in late stage AD, a network of fibres that contain the neuropeptide galanin displays significant hypertrophy and 'hyperinnervates' the surviving cholinergic neurons. Galanin is considered as a highly inducible neuroprotective factor and in AD this is assumed to be part of a protective tissue response. The aim of this study was to determine if a similar galanin upregulation is present in the nbM in post-mortem tissue from patients with LBD. Gallatin immunohistochemistry was carried out on anterior nbM sections from 76 LBD cases (27 PD, 15 PD with mild cognitive impairment (MCI), 34 PD with dementia (PDD) and 4 aged-matched controls. Galaninergic innervation of cholinergic neurons was assessed on a semi-quantitative scale.
The LBD group had significantly higher galaninergic innervation scores (p = 0.016) compared to controls. However, this difference was due to increased innervation density only in a subgroup of LBD cases and this correlated positively with choline acetyltransferase-immunopositive neuron density.
Galanin upregulation within the basal forebrain cholinergic system in LBD, similar to that seen in AD, may represent an intrinsic adaptive response to neurodegeneration that is consistent with its proposed roles in neurogenesis and neuroprotection. |
---|---|
ISSN: | 2051-5960 2051-5960 |
DOI: | 10.1186/s40478-015-0249-4 |