Impacts of IOD, ENSO and ENSO Modoki on the Australian Winter Wheat Yields in Recent Decades
Impacts of the Indian Ocean Dipole (IOD), two different types of El Niño/Southern Oscillation (ENSO): canonical ENSO and ENSO Modoki, on the year-to-year winter wheat yield variations in Australia have been investigated. It is found that IOD plays a dominant role in the recent three decades; the whe...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-11, Vol.5 (1), p.17252-17252, Article 17252 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Impacts of the Indian Ocean Dipole (IOD), two different types of El Niño/Southern Oscillation (ENSO): canonical ENSO and ENSO Modoki, on the year-to-year winter wheat yield variations in Australia have been investigated. It is found that IOD plays a dominant role in the recent three decades; the wheat yield is reduced (increased) by −28.4% (12.8%) in the positive (negative) IOD years. Although the canonical ENSO appears to be responsible for the wheat yield variations, its influences are largely counted by IOD owing to their frequent co-occurrence. In contrast, the ENSO Modoki may have its distinct impacts on the wheat yield variations, but they are much smaller compared to those of IOD. Both the observed April-May and the predicted September-November IOD indices by the SINTEX-F ocean-atmosphere coupled model initialized on April 1st just before the sowing season explain ~15% of the observed year-to-year wheat yield variances. The present study may lead to a possible scheme for predicting wheat yield variations in Australia in advance by use of simple climate mode indices. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep17252 |