The role of Drosophila mismatch repair in suppressing recombination between diverged sequences
DNA double-strand breaks (DSBs) must be accurately repaired to maintain genomic integrity. DSBs can be repaired by homologous recombination (HR), which uses an identical sequence as a template to restore the genetic information lost at the break. Suppression of recombination between diverged sequenc...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2015-11, Vol.5 (1), p.17601, Article 17601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | DNA double-strand breaks (DSBs) must be accurately repaired to maintain genomic integrity. DSBs can be repaired by homologous recombination (HR), which uses an identical sequence as a template to restore the genetic information lost at the break. Suppression of recombination between diverged sequences is essential to the repair of DSBs without aberrant and potentially mutagenic recombination between non-identical sequences, such as Alu repeats in the human genome. The mismatch repair (MMR) machinery has been found to suppress recombination between diverged sequences in murine cells. To test if this phenomenon is conserved in whole organisms, two DSB repair systems were utilized in
Drosophila melanogaster
. The DR-
white
and DR-
white.mu
assays provide a method of measuring DSB repair outcomes between identical and diverged sequences respectively.
msh6
–/–
flies, deficient in MMR, were not capable of suppressing recombination between sequences with 1.4% divergence and the average gene conversion tract length did not differ between
msh6
–/+
and
msh6
–/–
flies. These findings suggest that MMR has an early role in suppressing recombination between diverged sequences that is conserved in Drosophila. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep17601 |