Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review

Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell research & therapy 2015-11, Vol.6 (214), p.225-225, Article 225
Hauptverfasser: Panchalingam, Krishna M, Jung, Sunghoon, Rosenberg, Lawrence, Behie, Leo A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissue repair. This potential has initiated many early-phase clinical studies for the treatment of various diseases, disorders, and injuries by using either hMSCs themselves or their secreted products. Currently, hMSCs for clinical use are generated through conventional static adherent cultures in the presence of fetal bovine serum or human-sourced supplements. However, these methods suffer from variable culture conditions (i.e., ill-defined medium components and heterogeneous culture environment) and thus are not ideal procedures to meet the expected future demand of quality-assured hMSCs for human therapeutic use. Optimizing a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy. In this review, current media and methods for hMSC culture are outlined and bioprocess development strategies discussed.
ISSN:1757-6512
1757-6512
DOI:10.1186/s13287-015-0228-5