Characterization of Protein Structural Changes in Living Cells Using Time-Lapsed FTIR Imaging

Fourier-transform infrared (FTIR) spectroscopic imaging is a widely used method for studying the chemistry of proteins, lipids, and DNA in biological systems without the need for additional tagging or labeling. This technique can be especially powerful for spatially resolved, temporal studies of dyn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2015-06, Vol.87 (12), p.6025-6031
Hauptverfasser: Gelfand, Paul, Smith, Randy J, Stavitski, Eli, Borchelt, David R, Miller, Lisa M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fourier-transform infrared (FTIR) spectroscopic imaging is a widely used method for studying the chemistry of proteins, lipids, and DNA in biological systems without the need for additional tagging or labeling. This technique can be especially powerful for spatially resolved, temporal studies of dynamic changes such as in vivo protein folding in cell culture models. However, FTIR imaging experiments have typically been limited to dry samples as a result of the significant spectral overlap between water and the protein Amide I band centered at 1650 cm–1. Here, we demonstrate a method to rapidly obtain high quality FTIR spectral images at submicron pixel resolution in vivo over a duration of 18 h and longer through the development and use of a custom-built, demountable, microfluidic-incubator and a FTIR microscope coupled to a focal plane array (FPA) detector and a synchrotron light source. The combined system maximizes ease of use by allowing a user to perform standard cell culture techniques and experimental manipulation outside of the microfluidic-incubator, where assembly can be done just before the start of experimentation. The microfluidic-incubator provides an optimal path length of 6–8 μm and a submillimeter working distance in order to obtain FTIR images with 0.54−0.77 μm pixel resolution. In addition, we demonstrate a novel method for the correction of spectral distortions caused by varying concentrations of water over a subconfluent field of cells. Lastly, we use the microfluidic-incubator and time-lapsed FTIR imaging to determine the misfolding pathway of mutant copper–zinc superoxide dismutase (SOD1), the protein known to be a cause of familial amyotrophic lateral sclerosis (FALS).
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.5b00371