Colossal positive magnetoresistance in surface-passivated oxygen-deficient strontium titanite

Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2015-05, Vol.5 (1), p.10255-10255, Article 10255
Hauptverfasser: David, Adrian, Tian, Yufeng, Yang, Ping, Gao, Xingyu, Lin, Weinan, Shah, Amish B., Zuo, Jian-Min, Prellier, Wilfrid, Wu, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modulation of resistance by an external magnetic field, i.e. magnetoresistance effect, has been a long-lived theme of research due to both fundamental science and device applications. Here we report colossal positive magnetoresistance (CPMR) (>30,000% at a temperature of 2 K and a magnetic field of 9 T) discovered in degenerate semiconducting strontium titanite (SrTiO 3 ) single crystals capped with ultrathin SrTiO 3 /LaAlO 3 bilayers. The low-pressure high-temperature homoepitaxial growth of several unit cells of SrTiO 3 introduces oxygen vacancies and high-mobility carriers in the bulk SrTiO 3 and the three-unit-cell LaAlO 3 capping layer passivates the surface and improves carrier mobility by suppressing surface-defect-related scattering. The coexistence of multiple types of carriers and inhomogeneous transport lead to the emergence of CPMR. This unit-cell-level surface engineering approach is promising to be generalized to others oxides and to realize devices with high-mobility carriers and interesting magnetoelectronic properties.
ISSN:2045-2322
2045-2322
DOI:10.1038/srep10255