Inhibition of a Reductive Function of the Plasma Membrane by Bacitracin and Antibodies Against Protein Disulfide-Isomerase

Evidence had been provided that a disulfide-linked [125I]iodotyramine/poly(D-lysine) conjugate was reductively cleaved when bound nonspecifically to the surface of Chinese hamster ovary (CHO) cells and that this cleavage was abolished by membrane-impermeant sulfhydryl blockers. The same blockers wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1993-05, Vol.90 (9), p.4112-4116
Hauptverfasser: Mandel, Richard, Hugues J.-P. Ryser, Ghani, Farooq, Wu, Min, Peak, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence had been provided that a disulfide-linked [125I]iodotyramine/poly(D-lysine) conjugate was reductively cleaved when bound nonspecifically to the surface of Chinese hamster ovary (CHO) cells and that this cleavage was abolished by membrane-impermeant sulfhydryl blockers. The same blockers were subsequently found to inhibit the cytotoxicity of diphtheria toxin, a disulfide-linked heterodimer that binds to a specific surface receptor and must undergo chain separation to exert its cytotoxicity. This suggested that the disulfides of both macromolecules might be cleaved by a thiol-disulfide interchange reaction, possibly mediated by protein disulfide-isomerase (PDI, EC 5.3.4.1). We tested whether inhibitors of PDI-in particular, bacitracin and anti-PDI antibodies-might mimic the two effects of sulfhydryl blockers. Both bacitracin and anti-PDI antibodies were effective in inhibiting both reductive processes. This strongly suggests that the disulfide cleavage in the two membrane-bound macromolecules is mediated by PDI and that this enzyme, besides its known retention in the endoplasmic reticulum, must also be exposed at the plasma membrane. This paper points to other potentially important disulfide reductions that might be catalyzed by surface-associated PDI. It thereby broadens the known functions of an enzyme already known for its multifunctional properties.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.90.9.4112