An analysis of cochlear response harmonics: Contribution of neural excitation
In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (f(Tr)). In a simulation it is shown that the harmonic distortion from a nonlinear system...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2015-11, Vol.138 (5), p.2957-2963 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this report an analysis of cochlear response harmonics is developed to derive a mathematical function to estimate the gross mechanics involved in the in vivo transfer of acoustic sound into neural excitation (f(Tr)). In a simulation it is shown that the harmonic distortion from a nonlinear system can be used to estimate the nonlinearity, supporting the next phase of the experiment: Applying the harmonic analysis to physiologic measurements to derive estimates of the unknown, in vivo f(Tr). From gerbil ears, estimates of f(Tr) were derived from cochlear response measurements made with an electrode at the round window niche from 85 Hz tone bursts. Estimates of f(Tr) before and after inducing auditory neuropathy-loss of auditory nerve responses with preserved hair cell responses from neurotoxic treatment with ouabain-showed that the neural excitation from low-frequency tones contributes to the magnitude of f(Tr) but not the sigmoidal, saturating, nonlinear morphology. |
---|---|
ISSN: | 0001-4966 1520-8524 |
DOI: | 10.1121/1.4934556 |