Formation of bimetallic clusters in superfluid helium nanodroplets analysed by atomic resolution electron tomography

Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-10, Vol.6 (1), p.8779-8779, Article 8779
Hauptverfasser: Haberfehlner, Georg, Thaler, Philipp, Knez, Daniel, Volk, Alexander, Hofer, Ferdinand, Ernst, Wolfgang E., Kothleitner, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. Advancing electron tomography to atomic resolution is a powerful and challenging process. Here, the authors demonstrate atomic resolution electron tomography on silver-gold core-shell nanoclusters grown in superfluid helium nanodroplets, revealing their three-dimensional morphology and composition.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9779