Magnetotactic molecular architectures from self-assembly of β-peptide foldamers
The design of stimuli-responsive self-assembled molecular systems capable of undergoing mechanical work is one of the most important challenges in synthetic chemistry and materials science. Here we report that foldectures, that is, self-assembled molecular architectures of β -peptide foldamers, unif...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-10, Vol.6 (1), p.8747-8747, Article 8747 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design of stimuli-responsive self-assembled molecular systems capable of undergoing mechanical work is one of the most important challenges in synthetic chemistry and materials science. Here we report that foldectures, that is, self-assembled molecular architectures of
β
-peptide foldamers, uniformly align with respect to an applied static magnetic field, and also show instantaneous orientational motion in a dynamic magnetic field. This response is explained by the amplified anisotropy of the diamagnetic susceptibilities as a result of the well-ordered molecular packing of the foldectures. In addition, the motions of foldectures at the microscale can be translated into magnetotactic behaviour at the macroscopic scale in a way reminiscent to that of magnetosomes in magnetotactic bacteria. This study will provide significant inspiration for designing the next generation of biocompatible peptide-based molecular machines with applications in biological systems.
Controlling organic materials with magnetic fields in a dynamic fashion is a challenging task. Here, the authors show that synthetic ß-peptide foldamers can be rotated at will under a dynamic magnetic field and that this can be extended to macroscopic scale objects containing these materials. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9747 |