Opposite correlations between cation disordering and amorphization resistance in spinels versus pyrochlores
Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed i...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-10, Vol.6 (1), p.8750-8750, Article 8750 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Understanding and predicting radiation damage evolution in complex materials is crucial for developing next-generation nuclear energy sources. Here, using a combination of ion beam irradiation, transmission electron microscopy and X-ray diffraction, we show that, contrary to the behaviour observed in pyrochlores, the amorphization resistance of spinel compounds correlates directly with the energy to disorder the structure. Using a combination of atomistic simulation techniques, we ascribe this behaviour to structural defects on the cation sublattice that are present in spinel but not in pyrochlore. Specifically, because of these structural defects, there are kinetic pathways for the relaxation of disorder in spinel that are absent in pyrochlore. This leads to a direct correlation between amorphization resistance and disordering energetics in spinel, the opposite of that observed in pyrochlores. These results provide new insight into the origins of amorphization resistance in complex oxides beyond fluorite derivatives.
Radiation can cause the amorphization of crystalline materials, which needs to be understood if they are to be used in nuclear reactors. Here, the authors show a direct correlation between amorphization resistance and disordering energetics in spinel crystals, the opposite of that observed in pyrochlores. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9750 |