Atomic cobalt on nitrogen-doped graphene for hydrogen generation
Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. Here we report an electrocatalyst for hydrogen generation based on ve...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-10, Vol.6 (1), p.8668-8668, Article 8668 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reduction of water to hydrogen through electrocatalysis holds great promise for clean energy, but its large-scale application relies on the development of inexpensive and efficient catalysts to replace precious platinum catalysts. Here we report an electrocatalyst for hydrogen generation based on very small amounts of cobalt dispersed as individual atoms on nitrogen-doped graphene. This catalyst is robust and highly active in aqueous media with very low overpotentials (30 mV). A variety of analytical techniques and electrochemical measurements suggest that the catalytically active sites are associated with the metal centres coordinated to nitrogen. This unusual atomic constitution of supported metals is suggestive of a new approach to preparing extremely efficient single-atom catalysts.
There is ongoing interest in the development of non-precious metal catalysts for hydrogen evolution. Here, the authors fabricate a cobalt catalyst in which the cobalt is dispersed as single atoms on nitrogen-doped graphene, and report its high activity and stability for water reduction in acidic media. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9668 |