Dectin-1 Activation by a Natural Product β-Glucan Converts Immunosuppressive Macrophages into an M1-like Phenotype

Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2015-11, Vol.195 (10), p.5055-5065
Hauptverfasser: Liu, Min, Luo, Fengling, Ding, Chuanlin, Albeituni, Sabrin, Hu, Xiaoling, Ma, Yunfeng, Cai, Yihua, McNally, Lacey, Sanders, Mary Ann, Jain, Dharamvir, Kloecker, Goetz, Bousamra, 2nd, Michael, Zhang, Huang-ge, Higashi, Richard M, Lane, Andrew N, Fan, Teresa W-M, Yan, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate that particulate yeast-derived β-glucan, a natural polysaccharide compound, converts polarized alternatively activated macrophages or immunosuppressive TAM into a classically activated phenotype with potent immunostimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, Krebs cycle, and glutamine utilization. In addition, particulate β-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced spleen tyrosine kinase-Card9-Erk pathway. Further in vivo studies show that oral particulate β-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate β-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared with those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate β-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed light on the action mode of β-glucan treatment in cancer.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1501158