Hexosamine-Induced TGF-β Signaling and Osteogenic Differentiation of Dental Pulp Stem Cells Are Dependent on N-Acetylglucosaminyltransferase V

Glycans of cell surface glycoproteins are involved in the regulation of cell migration, growth, and differentiation. N-acetyl-glucosaminyltransferase V (GnT-V) transfers N-acetyl-d-glucosamine to form β1,6-branched N-glycans, thus playing a crucial role in the biosynthesis of glycoproteins. This stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMed research international 2015-01, Vol.2015 (2015), p.1-11
Hauptverfasser: Chang, Hao-Hueng, Huang, Chien-Hsun, Yao, Chung-Chen, Chen, Yi-Jane, Young, Tai-Horng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glycans of cell surface glycoproteins are involved in the regulation of cell migration, growth, and differentiation. N-acetyl-glucosaminyltransferase V (GnT-V) transfers N-acetyl-d-glucosamine to form β1,6-branched N-glycans, thus playing a crucial role in the biosynthesis of glycoproteins. This study reveals the distinct expression of GnT-V in STRO-1 and CD-146 double-positive dental pulp stem cells (DPSCs). Furthermore, we investigated three types of hexosamines and their N-acetyl derivatives for possible effects on the osteogenic differentiation potential of DPSCs. Our results showed that exogenous d-glucosamine (GlcN), N-acetyl-d-glucosamine (GlcNAc), d-mannosamine (ManN), and acetyl-d-mannosamine (ManNAc) promoted DPSCs’ early osteogenic differentiation in the absence of osteogenic supplements, but d-galactosamine (GalN) or N-acetyl-galactosamine (GalNAc) did not. Effects include the increased level of TGF-β receptor type I, activation of TGF-β signaling, and increased mRNA expression of osteogenic differentiation marker genes. The hexosamine-treated DPSCs showed an increased mineralized matrix deposition in the presence of osteogenic supplements. Moreover, the level of TGF-β receptor type I and early osteogenic differentiation were abolished in the DPSCs transfected with siRNA for GnT-V knockdown. These results suggest that GnT-V plays a critical role in the hexosamine-induced activation of TGF-β signaling and subsequent osteogenic differentiation of DPSCs.
ISSN:2314-6133
2314-6141
DOI:10.1155/2015/924397