Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates
Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exerc...
Gespeichert in:
Veröffentlicht in: | Cell metabolism 2015-11, Vol.22 (5), p.922-935 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exercise is essential in regulating energy metabolism and whole-body insulin sensitivity. To explore the exercise signaling network, we undertook a global analysis of protein phosphorylation in human skeletal muscle biopsies from untrained healthy males before and after a single high-intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given the importance of AMPK in exercise-regulated metabolism, we performed a targeted in vitro AMPK screen and employed machine learning to predict exercise-regulated AMPK substrates. We validated eight predicted AMPK substrates, including AKAP1, using targeted phosphoproteomics. Functional characterization revealed an undescribed role for AMPK-dependent phosphorylation of AKAP1 in mitochondrial respiration. These data expose the unexplored complexity of acute exercise signaling and provide insights into the role of AMPK in mitochondrial biochemistry.
[Display omitted]
•Identification of the human muscle acute exercise signaling repertoire•Integrated AMPK substrate prediction in human muscle and cells•Targeted validation of exercise-regulated AMPK substrates•AKAP1 phosphorylation by AMPK that regulates mitochondrial respiration
Combining phosphoproteomics, biochemical, and bioinformatics approaches, Hoffman et al. perform a global analysis of exercise signaling in human skeletal muscle and reveal an interconnected network of kinases and AMPK substrates in response to exercise. Among these, AKAP1 is shown to regulate mitochondrial respiration via AMPK-dependent phosphorylation. |
---|---|
ISSN: | 1550-4131 1932-7420 |
DOI: | 10.1016/j.cmet.2015.09.001 |