Original Article: Highly conserved cross‐reactive CD4+ T‐cell HA‐epitopes of seasonal and the 2009 pandemic influenza viruses

Please cite this paper as: Duvvuri et al. (2010) Highly conserved cross‐reactive CD4+ T‐cell HA‐epitopes of seasonal and the 2009 pandemic influenza viruses. Influenza and Other Respiratory Viruses 4(5), 249–258. Background The relatively mild nature of the 2009 influenza pandemic (nH1N1) highlights...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Influenza and other respiratory viruses 2010-09, Vol.4 (5), p.249-258
Hauptverfasser: Duvvuri, Venkata R. S. K., Moghadas, Seyed M., Guo, Hongbin, Duvvuri, Bhargavi, Heffernan, Jane M., Fisman, David N., Wu, Gillian E., Wu, Jianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Please cite this paper as: Duvvuri et al. (2010) Highly conserved cross‐reactive CD4+ T‐cell HA‐epitopes of seasonal and the 2009 pandemic influenza viruses. Influenza and Other Respiratory Viruses 4(5), 249–258. Background The relatively mild nature of the 2009 influenza pandemic (nH1N1) highlights the overriding importance of pre‐existing immune memory. The absence of cross‐reactive antibodies to nH1N1 in most individuals suggests that such attenuation may be attributed to pre‐existing cellular immune responses to epitopes shared between nH1N1 virus and previously circulating strains of inter‐pandemic influenza A viruses. Results We sought to identify potential CD4+ T cell epitopes and predict the level of cross‐reactivity of responding T cells. By performing large‐scale major histocompatibility complex II analyses on Hemagglutinin (HA) proteins, we investigated the degree of T‐cell cross‐reactivity between seasonal influenza A (sH1N1, H3N2) from 1968 to 2009 and nH1N1 strains. Each epitope was examined against all the protein sequences that correspond to sH1N1, H3N2, and nH1N1. T‐cell cross‐reactivity was estimated to be 52%, and maximum conservancy was found between sH1N1 and nH1N1 with a significant correlation (P 
ISSN:1750-2640
1750-2659
DOI:10.1111/j.1750-2659.2010.00161.x