Microscale insights into pneumococcal antibiotic mutant selection windows
The human pathogen Streptococcus pneumoniae shows alarming rates of antibiotic resistance emergence. The basic requirements for de novo resistance emergence are poorly understood in the pneumococcus. Here we systematically analyse the impact of antibiotics on S. pneumoniae at concentrations that inh...
Gespeichert in:
Veröffentlicht in: | Nature communications 2015-10, Vol.6 (1), p.8773-8773, Article 8773 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The human pathogen
Streptococcus pneumoniae
shows alarming rates of antibiotic resistance emergence. The basic requirements for
de novo
resistance emergence are poorly understood in the pneumococcus. Here we systematically analyse the impact of antibiotics on
S. pneumoniae
at concentrations that inhibit wild type cells, that is, within the mutant selection window. We identify discrete growth-inhibition profiles for bacteriostatic and bactericidal compounds, providing a predictive framework for distinction between the two classifications. Cells treated with bacteriostatic agents show continued gene expression activity, and real-time mutation assays link this activity to the development of genotypic resistance. Time-lapse microscopy reveals that antibiotic-susceptible pneumococci display remarkable growth and death bistability patterns in response to many antibiotics. We furthermore capture the rise of subpopulations with decreased susceptibility towards cell wall synthesis inhibitors (heteroresisters). We show that this phenomenon is epigenetically inherited, and that heteroresistance potentiates the accumulation of genotypic resistance.
The emergence of antibiotic resistance in bacteria is driven by inhibitory but non-lethal antibiotic concentrations. Here, Sorg and Veening study the effects of different antibiotics on the pneumococcus, with a focus on inhibition dynamics, metabolic activity and processes at the single-cell level. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/ncomms9773 |