Antihypertensive Effect of the GaMiSamHwangSaSimTang in Spontaneous Hypertensive Rats
The present study was designed to evaluate the antihypertensive effect of GaMiSamHwangSaSimTang (HVC1), a 30% ethanol extract of a mixture comprising Pruni Cortex, Scutellariae Radix, Coptidis Rhizoma, and Rhei Rhizoma, on spontaneous hypertensive rats (SHRs). The systolic blood pressure (SBP) was m...
Gespeichert in:
Veröffentlicht in: | Evidence-based complementary and alternative medicine 2015-01, Vol.2015 (2015), p.1-7 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study was designed to evaluate the antihypertensive effect of GaMiSamHwangSaSimTang (HVC1), a 30% ethanol extract of a mixture comprising Pruni Cortex, Scutellariae Radix, Coptidis Rhizoma, and Rhei Rhizoma, on spontaneous hypertensive rats (SHRs). The systolic blood pressure (SBP) was measured every 4 or 7 days using the noninvasive tail cuff system. The vasorelaxant effects on isolated aortic rings were evaluated. Aortic rings were contracted using phenylephrine (PE) or KCl, and the changes in tension were recorded via isometric transducers connected to a data acquisition system. In this study, oral administration of HVC1 decreased the SBP of SHRs over the experimental period. HVC1 induced concentration-dependent relaxation in the aortic rings that had been precontracted using PE or KCl. The vasorelaxant effects of HVC1 on endothelium-intact aortic rings were inhibited by pretreatment with Nω-Nitro-l-arginine methyl ester (L-NAME) or methylene blue. HVC1 inhibited the contraction induced by extracellular Ca2+ in endothelium-denuded rat aortic rings that had been precontracted using PE or KCl. In conclusion, HVC1 reduced the SBP of SHR and relaxed isolated SHR aortic rings by upregulating NO formation and the NO-cGMP pathway and blocking the entry of extracellular Ca2+ via receptor-operative Ca2+ channel and voltage-dependent Ca2+ channel. |
---|---|
ISSN: | 1741-427X 1741-4288 |
DOI: | 10.1155/2015/802368 |