Breaking resistance of pancreatic cancer cells to an attenuated vesicular stomatitis virus through a novel activity of IKK inhibitor TPCA-1
Abstract Vesicular stomatitis virus (VSV) is an effective oncolytic virus against most human pancreatic ductal adenocarcinoma (PDAC) cell lines. However, some PDAC cell lines are highly resistant to oncolytic VSV-ΔM51 infection. To better understand the mechanism of resistance, we tested a panel of...
Gespeichert in:
Veröffentlicht in: | Virology (New York, N.Y.) N.Y.), 2015-11, Vol.485, p.340-354 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Vesicular stomatitis virus (VSV) is an effective oncolytic virus against most human pancreatic ductal adenocarcinoma (PDAC) cell lines. However, some PDAC cell lines are highly resistant to oncolytic VSV-ΔM51 infection. To better understand the mechanism of resistance, we tested a panel of 16 small molecule inhibitors of different cellular signaling pathways, and identified TPCA-1 (IKK-β inhibitor) and ruxolitinib (JAK1/2 inhibitor), as strong enhancers of VSV-ΔM51 replication and virus-mediated oncolysis in all VSV-resistant PDAC cell lines. Both TPCA-1 and ruxolitinib similarly inhibited STAT1 and STAT2 phosphorylation and decreased expression of antiviral genes MxA and OAS. Moreover, an in situ kinase assay provided biochemical evidence that TPCA-1 directly inhibits JAK1 kinase activity. Together, our data demonstrate that TPCA-1 is a unique dual inhibitor of IKK-β and JAK1 kinase, and provide a new evidence that upregulated type I interferon signaling plays a major role in resistance of pancreatic cancer cells to oncolytic viruses. |
---|---|
ISSN: | 0042-6822 1096-0341 |
DOI: | 10.1016/j.virol.2015.08.003 |