Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length
Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re‐enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2015-10, Vol.34 (19), p.2424-2440 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2440 |
---|---|
container_issue | 19 |
container_start_page | 2424 |
container_title | The EMBO journal |
container_volume | 34 |
creator | Maskey, Dipak Marlin, Matthew Caleb Kim, Seokho Kim, Sehyun Ong, E-Ching Li, Guangpu Tsiokas, Leonidas |
description | Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re‐enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL‐10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7‐mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle‐dependent mechanisms can control ciliary length through a CDK5‐FBW7‐NDE1 pathway.
Synopsis
Biogenesis and disassembly of primary cilia are coupled to the cell cycle by incompletely understood mechanisms. This study identifies such a link, by which a quiescence‐specific kinase controls the levels of a negative regulator of ciliary length.
Primary cilia are formed in quiescent cells.
NDE1, a negative regulator of ciliary length, is downregulated in quiescent cells.
CDK5, a kinase active in quiescent cells, phosphorylates NDE1 within an FBW7‐specific phosphodegron.
The FBW7 E3 ligase recognizes and targets phosphorylated NDE1 for degradation via the ubiquitin–proteasome system.
Destruction of NDE1 in G1/G0 allows cilia to reach their proper length.
Graphical Abstract
Quiescence‐specific kinase CDK5 initiates NDE1 degradation to couple cell cycle state to length control of primary cilia. |
doi_str_mv | 10.15252/embj.201490831 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4601663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718914336</sourcerecordid><originalsourceid>FETCH-LOGICAL-i5311-6a0fd61cddc806ab618f5c79da97509536fc39ecaccc67b29364fdd3fc449ec63</originalsourceid><addsrcrecordid>eNptUU1vEzEUtBAVDYEzN2SJC5dt7fXaXnNAoklaPtIiEKiIi-W1vanDxpvau8D-e5ymrErFyXp-M_PmzQPgGUZHmOY0P7aban2UI1wIVBL8AExwwVCWI04fggnKGc4KXIpD8DjGNUKIlhw_Aoc5yxGjZTEBamabBupBNzYzdmu9sb6DfeWue9cNjepc66HyBhobu9Drm7qt4cV8gWE1wNn8A81OTy45DHbVJ7yNULvGqTDAxvpVd_UEHNSqifbp7TsFX08XX2Zvs-XHs3ezN8vMUYJxxhSqDcPaGF0ipiqGy5pqLowSnCJBCas1EVYrrTXjVS4IK2pjSK2LIn0zMgWv97rbvtpYo9MeQTVyG9wmmZGtcvLfjndXctX-lCkwzBhJAi9vBUJ73ad15cZFneJR3rZ9lJinJHFByG7Wi3vQddsHn9bbobgQOU8Gp-D5XUejlb_pJ8CrPeCXa-ww9jGSN8eVu-PK8bhycX7yfqwSGe3JMfH8yoY7Hv4vkCjZnuJiZ3-P81T4IRknnMrLizP5af7tc7Esv0tG_gA4kbfZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717992729</pqid></control><display><type>article</type><title>Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length</title><source>Springer Nature OA Free Journals</source><creator>Maskey, Dipak ; Marlin, Matthew Caleb ; Kim, Seokho ; Kim, Sehyun ; Ong, E-Ching ; Li, Guangpu ; Tsiokas, Leonidas</creator><creatorcontrib>Maskey, Dipak ; Marlin, Matthew Caleb ; Kim, Seokho ; Kim, Sehyun ; Ong, E-Ching ; Li, Guangpu ; Tsiokas, Leonidas</creatorcontrib><description>Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re‐enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL‐10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7‐mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle‐dependent mechanisms can control ciliary length through a CDK5‐FBW7‐NDE1 pathway.
Synopsis
Biogenesis and disassembly of primary cilia are coupled to the cell cycle by incompletely understood mechanisms. This study identifies such a link, by which a quiescence‐specific kinase controls the levels of a negative regulator of ciliary length.
Primary cilia are formed in quiescent cells.
NDE1, a negative regulator of ciliary length, is downregulated in quiescent cells.
CDK5, a kinase active in quiescent cells, phosphorylates NDE1 within an FBW7‐specific phosphodegron.
The FBW7 E3 ligase recognizes and targets phosphorylated NDE1 for degradation via the ubiquitin–proteasome system.
Destruction of NDE1 in G1/G0 allows cilia to reach their proper length.
Graphical Abstract
Quiescence‐specific kinase CDK5 initiates NDE1 degradation to couple cell cycle state to length control of primary cilia.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201490831</identifier><identifier>PMID: 26206584</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Animals ; BALB 3T3 Cells ; Biosynthesis ; CDK5 ; Cell cycle ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; cilia ; Cilia - genetics ; Cilia - metabolism ; Cyclin-Dependent Kinase 5 - genetics ; Cyclin-Dependent Kinase 5 - metabolism ; EMBO05 ; EMBO06 ; EMBO31 ; F-Box Proteins - genetics ; F-Box Proteins - metabolism ; F-Box-WD Repeat-Containing Protein 7 ; FBW7 ; HEK293 Cells ; Humans ; Kinases ; Mice ; Microtubule-Associated Proteins - genetics ; Microtubule-Associated Proteins - metabolism ; NDE1 ; p35 ; Proteins ; Proteolysis ; Signal Transduction - physiology ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - metabolism ; Ubiquitination - physiology</subject><ispartof>The EMBO journal, 2015-10, Vol.34 (19), p.2424-2440</ispartof><rights>The Author(s) 2015</rights><rights>2015 The Authors</rights><rights>2015 The Authors.</rights><rights>2015 EMBO</rights><rights>2015 The Authors 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601663/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4601663/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.15252/embj.201490831$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26206584$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maskey, Dipak</creatorcontrib><creatorcontrib>Marlin, Matthew Caleb</creatorcontrib><creatorcontrib>Kim, Seokho</creatorcontrib><creatorcontrib>Kim, Sehyun</creatorcontrib><creatorcontrib>Ong, E-Ching</creatorcontrib><creatorcontrib>Li, Guangpu</creatorcontrib><creatorcontrib>Tsiokas, Leonidas</creatorcontrib><title>Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re‐enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL‐10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7‐mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle‐dependent mechanisms can control ciliary length through a CDK5‐FBW7‐NDE1 pathway.
Synopsis
Biogenesis and disassembly of primary cilia are coupled to the cell cycle by incompletely understood mechanisms. This study identifies such a link, by which a quiescence‐specific kinase controls the levels of a negative regulator of ciliary length.
Primary cilia are formed in quiescent cells.
NDE1, a negative regulator of ciliary length, is downregulated in quiescent cells.
CDK5, a kinase active in quiescent cells, phosphorylates NDE1 within an FBW7‐specific phosphodegron.
The FBW7 E3 ligase recognizes and targets phosphorylated NDE1 for degradation via the ubiquitin–proteasome system.
Destruction of NDE1 in G1/G0 allows cilia to reach their proper length.
Graphical Abstract
Quiescence‐specific kinase CDK5 initiates NDE1 degradation to couple cell cycle state to length control of primary cilia.</description><subject>Animals</subject><subject>BALB 3T3 Cells</subject><subject>Biosynthesis</subject><subject>CDK5</subject><subject>Cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>cilia</subject><subject>Cilia - genetics</subject><subject>Cilia - metabolism</subject><subject>Cyclin-Dependent Kinase 5 - genetics</subject><subject>Cyclin-Dependent Kinase 5 - metabolism</subject><subject>EMBO05</subject><subject>EMBO06</subject><subject>EMBO31</subject><subject>F-Box Proteins - genetics</subject><subject>F-Box Proteins - metabolism</subject><subject>F-Box-WD Repeat-Containing Protein 7</subject><subject>FBW7</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Kinases</subject><subject>Mice</subject><subject>Microtubule-Associated Proteins - genetics</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>NDE1</subject><subject>p35</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Signal Transduction - physiology</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - metabolism</subject><subject>Ubiquitination - physiology</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptUU1vEzEUtBAVDYEzN2SJC5dt7fXaXnNAoklaPtIiEKiIi-W1vanDxpvau8D-e5ymrErFyXp-M_PmzQPgGUZHmOY0P7aban2UI1wIVBL8AExwwVCWI04fggnKGc4KXIpD8DjGNUKIlhw_Aoc5yxGjZTEBamabBupBNzYzdmu9sb6DfeWue9cNjepc66HyBhobu9Drm7qt4cV8gWE1wNn8A81OTy45DHbVJ7yNULvGqTDAxvpVd_UEHNSqifbp7TsFX08XX2Zvs-XHs3ezN8vMUYJxxhSqDcPaGF0ipiqGy5pqLowSnCJBCas1EVYrrTXjVS4IK2pjSK2LIn0zMgWv97rbvtpYo9MeQTVyG9wmmZGtcvLfjndXctX-lCkwzBhJAi9vBUJ73ad15cZFneJR3rZ9lJinJHFByG7Wi3vQddsHn9bbobgQOU8Gp-D5XUejlb_pJ8CrPeCXa-ww9jGSN8eVu-PK8bhycX7yfqwSGe3JMfH8yoY7Hv4vkCjZnuJiZ3-P81T4IRknnMrLizP5af7tc7Esv0tG_gA4kbfZ</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Maskey, Dipak</creator><creator>Marlin, Matthew Caleb</creator><creator>Kim, Seokho</creator><creator>Kim, Sehyun</creator><creator>Ong, E-Ching</creator><creator>Li, Guangpu</creator><creator>Tsiokas, Leonidas</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151001</creationdate><title>Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length</title><author>Maskey, Dipak ; Marlin, Matthew Caleb ; Kim, Seokho ; Kim, Sehyun ; Ong, E-Ching ; Li, Guangpu ; Tsiokas, Leonidas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i5311-6a0fd61cddc806ab618f5c79da97509536fc39ecaccc67b29364fdd3fc449ec63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>BALB 3T3 Cells</topic><topic>Biosynthesis</topic><topic>CDK5</topic><topic>Cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>cilia</topic><topic>Cilia - genetics</topic><topic>Cilia - metabolism</topic><topic>Cyclin-Dependent Kinase 5 - genetics</topic><topic>Cyclin-Dependent Kinase 5 - metabolism</topic><topic>EMBO05</topic><topic>EMBO06</topic><topic>EMBO31</topic><topic>F-Box Proteins - genetics</topic><topic>F-Box Proteins - metabolism</topic><topic>F-Box-WD Repeat-Containing Protein 7</topic><topic>FBW7</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Kinases</topic><topic>Mice</topic><topic>Microtubule-Associated Proteins - genetics</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>NDE1</topic><topic>p35</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Signal Transduction - physiology</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - metabolism</topic><topic>Ubiquitination - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maskey, Dipak</creatorcontrib><creatorcontrib>Marlin, Matthew Caleb</creatorcontrib><creatorcontrib>Kim, Seokho</creatorcontrib><creatorcontrib>Kim, Sehyun</creatorcontrib><creatorcontrib>Ong, E-Ching</creatorcontrib><creatorcontrib>Li, Guangpu</creatorcontrib><creatorcontrib>Tsiokas, Leonidas</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maskey, Dipak</au><au>Marlin, Matthew Caleb</au><au>Kim, Seokho</au><au>Kim, Sehyun</au><au>Ong, E-Ching</au><au>Li, Guangpu</au><au>Tsiokas, Leonidas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>34</volume><issue>19</issue><spage>2424</spage><epage>2440</epage><pages>2424-2440</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re‐enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL‐10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7‐mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle‐dependent mechanisms can control ciliary length through a CDK5‐FBW7‐NDE1 pathway.
Synopsis
Biogenesis and disassembly of primary cilia are coupled to the cell cycle by incompletely understood mechanisms. This study identifies such a link, by which a quiescence‐specific kinase controls the levels of a negative regulator of ciliary length.
Primary cilia are formed in quiescent cells.
NDE1, a negative regulator of ciliary length, is downregulated in quiescent cells.
CDK5, a kinase active in quiescent cells, phosphorylates NDE1 within an FBW7‐specific phosphodegron.
The FBW7 E3 ligase recognizes and targets phosphorylated NDE1 for degradation via the ubiquitin–proteasome system.
Destruction of NDE1 in G1/G0 allows cilia to reach their proper length.
Graphical Abstract
Quiescence‐specific kinase CDK5 initiates NDE1 degradation to couple cell cycle state to length control of primary cilia.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><pmid>26206584</pmid><doi>10.15252/embj.201490831</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2015-10, Vol.34 (19), p.2424-2440 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4601663 |
source | Springer Nature OA Free Journals |
subjects | Animals BALB 3T3 Cells Biosynthesis CDK5 Cell cycle Cell Cycle - physiology Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism cilia Cilia - genetics Cilia - metabolism Cyclin-Dependent Kinase 5 - genetics Cyclin-Dependent Kinase 5 - metabolism EMBO05 EMBO06 EMBO31 F-Box Proteins - genetics F-Box Proteins - metabolism F-Box-WD Repeat-Containing Protein 7 FBW7 HEK293 Cells Humans Kinases Mice Microtubule-Associated Proteins - genetics Microtubule-Associated Proteins - metabolism NDE1 p35 Proteins Proteolysis Signal Transduction - physiology Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism Ubiquitination - physiology |
title | Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T21%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20cycle-dependent%20ubiquitylation%20and%20destruction%20of%20NDE1%20by%20CDK5-FBW7%20regulates%20ciliary%20length&rft.jtitle=The%20EMBO%20journal&rft.au=Maskey,%20Dipak&rft.date=2015-10-01&rft.volume=34&rft.issue=19&rft.spage=2424&rft.epage=2440&rft.pages=2424-2440&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.15252/embj.201490831&rft_dat=%3Cproquest_C6C%3E1718914336%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717992729&rft_id=info:pmid/26206584&rfr_iscdi=true |