Terahertz-driven linear electron acceleration

The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m −1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-10, Vol.6 (1), p.8486-8486, Article 8486
Hauptverfasser: Nanni, Emilio A., Huang, Wenqian R., Hong, Kyung-Han, Ravi, Koustuban, Fallahi, Arya, Moriena, Gustavo, Dwayne Miller, R. J., Kärtner, Franz X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m −1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. Pulses of light offer a way to create particle accelerators that are a fraction of the size of conventional approaches. Here, the authors demonstrate the linear acceleration of electrons with kiloelectronvolt energy gain and in extremely short bunches using optically-generated terahertz pulses.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms9486