Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+-Glucose Cotransport
Intracellular Na(+) concentration ([Na(+)]i) regulates Ca(2+) cycling, contractility, metabolism, and electrical stability of the heart. [Na(+)]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na(+)]i is also increased in type 2 diabetes (T2D...
Gespeichert in:
Veröffentlicht in: | Journal of the American Heart Association 2015-08, Vol.4 (9), p.e002183-e002183 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intracellular Na(+) concentration ([Na(+)]i) regulates Ca(2+) cycling, contractility, metabolism, and electrical stability of the heart. [Na(+)]i is elevated in heart failure, leading to arrhythmias and oxidative stress. We hypothesized that myocyte [Na(+)]i is also increased in type 2 diabetes (T2D) due to enhanced activity of the Na(+)-glucose cotransporter.
To test this hypothesis, we used myocardial tissue from humans with T2D and a rat model of late-onset T2D (HIP rat). Western blot analysis showed increased Na(+)-glucose cotransporter expression in failing hearts from T2D patients compared with nondiabetic persons (by 73±13%) and in HIP rat hearts versus wild-type (WT) littermates (by 61±8%). [Na(+)]i was elevated in HIP rat myocytes both at rest (14.7±0.9 versus 11.4±0.7 mmol/L in WT) and during electrical stimulation (17.3±0.8 versus 15.0±0.7 mmol/L); however, the Na(+)/K(+)-pump function was similar in HIP and WT cells, suggesting that higher [Na(+)]i is due to enhanced Na(+) entry in diabetic hearts. Indeed, Na(+) influx was significantly larger in myocytes from HIP versus WT rats (1.77±0.11 versus 1.29±0.06 mmol/L per minute). Na(+)-glucose cotransporter inhibition with phlorizin or glucose-free solution greatly reduced Na(+) influx in HIP myocytes (to 1.20±0.16 mmol/L per minute), whereas it had no effect in WT cells. Phlorizin also significantly decreased glucose uptake in HIP myocytes (by 33±9%) but not in WT, indicating an increased reliance on the Na(+)-glucose cotransporter for glucose uptake in T2D hearts.
Myocyte Na(+)-glucose cotransport is enhanced in T2D, which increases Na(+) influx and causes Na(+) overload. Higher [Na(+)]i may contribute to arrhythmogenesis and oxidative stress in diabetic hearts. |
---|---|
ISSN: | 2047-9980 2047-9980 |
DOI: | 10.1161/jaha.115.002183 |