Sumoylation of the GTPase Ran by the RanBP2 SUMO E3 Ligase Complex

The SUMO E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9 localizes at cytoplasmic nuclear pore complex (NPC) filaments and is a docking site in nucleocytoplasmic transport. RanBP2 has four Ran binding domains (RBDs), two of which flank RanBP2's E3 ligase region. We thus wondered whether the small G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-09, Vol.290 (39), p.23589-23602
Hauptverfasser: Sakin, Volkan, Richter, Sebastian M., Hsiao, He-Hsuan, Urlaub, Henning, Melchior, Frauke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The SUMO E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9 localizes at cytoplasmic nuclear pore complex (NPC) filaments and is a docking site in nucleocytoplasmic transport. RanBP2 has four Ran binding domains (RBDs), two of which flank RanBP2's E3 ligase region. We thus wondered whether the small GTPase Ran is a target for RanBP2-dependent sumoylation. Indeed, Ran is sumoylated both by a reconstituted and the endogenous RanBP2 complex in semi-permeabilized cells. Generic inhibition of SUMO isopeptidases or depletion of the SUMO isopeptidase SENP1 enhances sumoylation of Ran in semi-permeabilized cells. As Ran is typically associated with transport receptors, we tested the influence of Crm1, Imp β, Transportin, and NTF2 on Ran sumoylation. Surprisingly, all inhibited Ran sumoylation. Mapping Ran sumoylation sites revealed that transport receptors may simply block access of the E2-conjugating enzyme Ubc9, however the acceptor lysines are perfectly accessible in Ran/NTF2 complexes. Isothermal titration calorimetry revealed that NTF2 prevents sumoylation by reducing RanGDP's affinity to RanBP2's RBDs to undetectable levels. Taken together, our findings indicate that RanGDP and not RanGTP is the physiological target for the RanBP2 SUMO E3 ligase complex. Recognition requires interaction of Ran with RanBP2's RBDs, which is prevented by the transport factor NTF2. Background: The GTPase Ran is the key regulator of nucleocytoplasmic transport. Results: RanGDP is modified with SUMO1 by the E3 ligase RanBP2 and deSUMOylated by the isopeptidase SENP1. Conclusion: Ran is subject to reversible sumoylation at nuclear pore complexes. Significance: SUMOylation of Ran might be a novel way of regulating the directionality of nucleocytoplasmic transport for certain cargoes.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M115.660118