Structural Insight into Specificity of Interactions between Nonconventional Three-finger Weak Toxin from Naja kaouthia (WTX) and Muscarinic Acetylcholine Receptors

Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional “three-finger” snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2015-09, Vol.290 (39), p.23616-23630
Hauptverfasser: Lyukmanova, Ekaterina N., Shenkarev, Zakhar O., Shulepko, Mikhail A., Paramonov, Alexander S., Chugunov, Anton O., Janickova, Helena, Dolejsi, Eva, Dolezal, Vladimir, Utkin, Yuri N., Tsetlin, Victor I., Arseniev, Alexander S., Efremov, Roman G., Dolgikh, Dmitry A., Kirpichnikov, Mikhail P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional “three-finger” snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by “three-finger” snake neurotoxins. Background: Cobra's “three-finger” nonconventional toxin WTX allosterically modulates muscarinic receptors (mAChRs). Results: Activity of several WTX mutants was analyzed; toxin spatial structure and dynamics were determined; and complexes of toxin with M1 and M3 mAChRs were modeled. Conclusion: Flexible loop II is the major determinant for toxin binding to different mAChRs. Significance: Structural framework for rationalization of target-specific positive/negative allosteric regulation of mAChRs is provided.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M115.656595