Mechanisms regulating cytochrome c release in pancreatic mitochondria

Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2009-03, Vol.58 (3), p.431-442
Hauptverfasser: Odinokova, I V, Sung, K-F, Mareninova, O A, Hermann, K, Evtodienko, Y, Andreyev, A, Gukovsky, I, Gukovskaya, A S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 3
container_start_page 431
container_title Gut
container_volume 58
creator Odinokova, I V
Sung, K-F
Mareninova, O A
Hermann, K
Evtodienko, Y
Andreyev, A
Gukovsky, I
Gukovskaya, A S
description Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS), the signals involved in acute pancreatitis. We used both isolated rat pancreatic mitochondria and intact acinar cells hyperstimulated with cholecystokinin-8 (CCK-8; in vitro model of acute pancreatitis). Results: Micromolar amounts of Ca2+ depolarised isolated pancreatic mitochondria through a mechanism different from the “classical” (ie, liver) mitochondrial permeability transition pore (mPTP). In contrast with liver, Ca2+-induced mPTP opening caused a dramatic decrease in ROS and was not associated with pancreatic mitochondria swelling. Importantly, we found that Ca2+-induced depolarisation inhibited cytochrome c release from pancreatic mitochondria, due to blockade of ROS production. As a result, Ca2+ exerted two opposite effects on cytochrome c release: Ca2+ per se stimulated the release, whereas Ca2+-induced depolarisation inhibited it. This dual effect caused a non-monotonous dose-dependence of cytochrome c release on Ca2+. In intact acinar cells, cytochrome c release, caspase activation and apoptosis were all stimulated by ROS and Ca2+, and inhibited by depolarisation, corroborating the findings on isolated pancreatic mitochondria. Conclusions: These data implicate ROS as a key mediator of CCK-induced apoptotic responses. The results indicate a major role for mitochondria in the effects of Ca2+ and ROS on acinar cell death. They suggest that the extent of apoptosis in pancreatitis is regulated by the interplay between ROS, ΔΨm and Ca2+. Stabilising mitochondria against loss of ΔΨm may represent a strategy to mitigate the severity of pancreatitis.
doi_str_mv 10.1136/gut.2007.147207
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>66914223</sourcerecordid><originalsourceid>FETCH-LOGICAL-b492t-1942d6dfd206517dd64a611f080378ff92daa9728ad638a19d3ab1b0264a12483</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agil2rZ28yIHgQZpuXyeTHRdClWqGtglrFS8hMMrtZZ5I1mRH73zfLLK168RTI--QlL1-EngJeAlTsZD2NS4IxXwLlBPN7aAGUibIiQtxHC4yBlzWn8gg9SmmLMRZCwkN0BKKWDGS9QKcXtt1o79KQimjXU69H59dFez2GdhPDYIs27_dWJ1s4X-y0b6PNpi0GtyfBm-j0Y_Sg032yTw7rMfry9vTz6qw8__Du_er1edlQScYSJCWGmc4QzGrgxjCqGUCHBa646DpJjNaSE6ENq4QGaSrdQINJdkCoqI7Rq7nvbmoGa1rrx6h7tYtu0PFaBe3U3xXvNmodfila1_ljaG7w4tAghp-TTaMaXGpt32tvw5QUYxIoIVWGz_-B2zBFn4dTwLmsKMWSZ3UyqzaGlKLtbp8CWO0DUjkgtQ9IzQHlE8_-nODOHxLJoJyBS6P9fVvX8YdivOK1urxaqa-fLr6zq28f1ZvsX86-Gbb_vf0GzFWpLQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779344097</pqid></control><display><type>article</type><title>Mechanisms regulating cytochrome c release in pancreatic mitochondria</title><source>PubMed Central Free</source><source>MEDLINE</source><source>BMJ Journals - NESLi2</source><creator>Odinokova, I V ; Sung, K-F ; Mareninova, O A ; Hermann, K ; Evtodienko, Y ; Andreyev, A ; Gukovsky, I ; Gukovskaya, A S</creator><creatorcontrib>Odinokova, I V ; Sung, K-F ; Mareninova, O A ; Hermann, K ; Evtodienko, Y ; Andreyev, A ; Gukovsky, I ; Gukovskaya, A S</creatorcontrib><description>Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS), the signals involved in acute pancreatitis. We used both isolated rat pancreatic mitochondria and intact acinar cells hyperstimulated with cholecystokinin-8 (CCK-8; in vitro model of acute pancreatitis). Results: Micromolar amounts of Ca2+ depolarised isolated pancreatic mitochondria through a mechanism different from the “classical” (ie, liver) mitochondrial permeability transition pore (mPTP). In contrast with liver, Ca2+-induced mPTP opening caused a dramatic decrease in ROS and was not associated with pancreatic mitochondria swelling. Importantly, we found that Ca2+-induced depolarisation inhibited cytochrome c release from pancreatic mitochondria, due to blockade of ROS production. As a result, Ca2+ exerted two opposite effects on cytochrome c release: Ca2+ per se stimulated the release, whereas Ca2+-induced depolarisation inhibited it. This dual effect caused a non-monotonous dose-dependence of cytochrome c release on Ca2+. In intact acinar cells, cytochrome c release, caspase activation and apoptosis were all stimulated by ROS and Ca2+, and inhibited by depolarisation, corroborating the findings on isolated pancreatic mitochondria. Conclusions: These data implicate ROS as a key mediator of CCK-induced apoptotic responses. The results indicate a major role for mitochondria in the effects of Ca2+ and ROS on acinar cell death. They suggest that the extent of apoptosis in pancreatitis is regulated by the interplay between ROS, ΔΨm and Ca2+. Stabilising mitochondria against loss of ΔΨm may represent a strategy to mitigate the severity of pancreatitis.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gut.2007.147207</identifier><identifier>PMID: 18596195</identifier><identifier>CODEN: GUTTAK</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Animals ; Apoptosis ; Apoptosis - physiology ; Calcium - metabolism ; Calcium Signaling ; Cell Death - physiology ; Cytochrome ; Cytochromes c - metabolism ; Gangrene ; Membrane Potential, Mitochondrial - physiology ; Mitochondria ; Mitochondria - metabolism ; Mitochondrial DNA ; Mitochondrial Membrane Transport Proteins - metabolism ; Pancreas - metabolism ; Pancreas - physiology ; Pancreatitis - metabolism ; Pancreatitis - physiopathology ; Permeability ; Rats ; Reactive Oxygen Species - metabolism ; Rodents</subject><ispartof>Gut, 2009-03, Vol.58 (3), p.431-442</ispartof><rights>2009 BMJ Publishing Group and British Society of Gastroenterology</rights><rights>Copyright: 2009 2009 BMJ Publishing Group and British Society of Gastroenterology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b492t-1942d6dfd206517dd64a611f080378ff92daa9728ad638a19d3ab1b0264a12483</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://gut.bmj.com/content/58/3/431.full.pdf$$EPDF$$P50$$Gbmj$$H</linktopdf><linktohtml>$$Uhttp://gut.bmj.com/content/58/3/431.full$$EHTML$$P50$$Gbmj$$H</linktohtml><link.rule.ids>114,115,230,314,727,780,784,885,3196,23571,27924,27925,53791,53793,77600,77631</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18596195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Odinokova, I V</creatorcontrib><creatorcontrib>Sung, K-F</creatorcontrib><creatorcontrib>Mareninova, O A</creatorcontrib><creatorcontrib>Hermann, K</creatorcontrib><creatorcontrib>Evtodienko, Y</creatorcontrib><creatorcontrib>Andreyev, A</creatorcontrib><creatorcontrib>Gukovsky, I</creatorcontrib><creatorcontrib>Gukovskaya, A S</creatorcontrib><title>Mechanisms regulating cytochrome c release in pancreatic mitochondria</title><title>Gut</title><addtitle>Gut</addtitle><description>Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS), the signals involved in acute pancreatitis. We used both isolated rat pancreatic mitochondria and intact acinar cells hyperstimulated with cholecystokinin-8 (CCK-8; in vitro model of acute pancreatitis). Results: Micromolar amounts of Ca2+ depolarised isolated pancreatic mitochondria through a mechanism different from the “classical” (ie, liver) mitochondrial permeability transition pore (mPTP). In contrast with liver, Ca2+-induced mPTP opening caused a dramatic decrease in ROS and was not associated with pancreatic mitochondria swelling. Importantly, we found that Ca2+-induced depolarisation inhibited cytochrome c release from pancreatic mitochondria, due to blockade of ROS production. As a result, Ca2+ exerted two opposite effects on cytochrome c release: Ca2+ per se stimulated the release, whereas Ca2+-induced depolarisation inhibited it. This dual effect caused a non-monotonous dose-dependence of cytochrome c release on Ca2+. In intact acinar cells, cytochrome c release, caspase activation and apoptosis were all stimulated by ROS and Ca2+, and inhibited by depolarisation, corroborating the findings on isolated pancreatic mitochondria. Conclusions: These data implicate ROS as a key mediator of CCK-induced apoptotic responses. The results indicate a major role for mitochondria in the effects of Ca2+ and ROS on acinar cell death. They suggest that the extent of apoptosis in pancreatitis is regulated by the interplay between ROS, ΔΨm and Ca2+. Stabilising mitochondria against loss of ΔΨm may represent a strategy to mitigate the severity of pancreatitis.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Apoptosis - physiology</subject><subject>Calcium - metabolism</subject><subject>Calcium Signaling</subject><subject>Cell Death - physiology</subject><subject>Cytochrome</subject><subject>Cytochromes c - metabolism</subject><subject>Gangrene</subject><subject>Membrane Potential, Mitochondrial - physiology</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>Mitochondrial Membrane Transport Proteins - metabolism</subject><subject>Pancreas - metabolism</subject><subject>Pancreas - physiology</subject><subject>Pancreatitis - metabolism</subject><subject>Pancreatitis - physiopathology</subject><subject>Permeability</subject><subject>Rats</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rodents</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0c9rFDEUB_Agil2rZ28yIHgQZpuXyeTHRdClWqGtglrFS8hMMrtZZ5I1mRH73zfLLK168RTI--QlL1-EngJeAlTsZD2NS4IxXwLlBPN7aAGUibIiQtxHC4yBlzWn8gg9SmmLMRZCwkN0BKKWDGS9QKcXtt1o79KQimjXU69H59dFez2GdhPDYIs27_dWJ1s4X-y0b6PNpi0GtyfBm-j0Y_Sg032yTw7rMfry9vTz6qw8__Du_er1edlQScYSJCWGmc4QzGrgxjCqGUCHBa646DpJjNaSE6ENq4QGaSrdQINJdkCoqI7Rq7nvbmoGa1rrx6h7tYtu0PFaBe3U3xXvNmodfila1_ljaG7w4tAghp-TTaMaXGpt32tvw5QUYxIoIVWGz_-B2zBFn4dTwLmsKMWSZ3UyqzaGlKLtbp8CWO0DUjkgtQ9IzQHlE8_-nODOHxLJoJyBS6P9fVvX8YdivOK1urxaqa-fLr6zq28f1ZvsX86-Gbb_vf0GzFWpLQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Odinokova, I V</creator><creator>Sung, K-F</creator><creator>Mareninova, O A</creator><creator>Hermann, K</creator><creator>Evtodienko, Y</creator><creator>Andreyev, A</creator><creator>Gukovsky, I</creator><creator>Gukovskaya, A S</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ Publishing Group LTD</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Mechanisms regulating cytochrome c release in pancreatic mitochondria</title><author>Odinokova, I V ; Sung, K-F ; Mareninova, O A ; Hermann, K ; Evtodienko, Y ; Andreyev, A ; Gukovsky, I ; Gukovskaya, A S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b492t-1942d6dfd206517dd64a611f080378ff92daa9728ad638a19d3ab1b0264a12483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Apoptosis - physiology</topic><topic>Calcium - metabolism</topic><topic>Calcium Signaling</topic><topic>Cell Death - physiology</topic><topic>Cytochrome</topic><topic>Cytochromes c - metabolism</topic><topic>Gangrene</topic><topic>Membrane Potential, Mitochondrial - physiology</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>Mitochondrial Membrane Transport Proteins - metabolism</topic><topic>Pancreas - metabolism</topic><topic>Pancreas - physiology</topic><topic>Pancreatitis - metabolism</topic><topic>Pancreatitis - physiopathology</topic><topic>Permeability</topic><topic>Rats</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Odinokova, I V</creatorcontrib><creatorcontrib>Sung, K-F</creatorcontrib><creatorcontrib>Mareninova, O A</creatorcontrib><creatorcontrib>Hermann, K</creatorcontrib><creatorcontrib>Evtodienko, Y</creatorcontrib><creatorcontrib>Andreyev, A</creatorcontrib><creatorcontrib>Gukovsky, I</creatorcontrib><creatorcontrib>Gukovskaya, A S</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Odinokova, I V</au><au>Sung, K-F</au><au>Mareninova, O A</au><au>Hermann, K</au><au>Evtodienko, Y</au><au>Andreyev, A</au><au>Gukovsky, I</au><au>Gukovskaya, A S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms regulating cytochrome c release in pancreatic mitochondria</atitle><jtitle>Gut</jtitle><addtitle>Gut</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>58</volume><issue>3</issue><spage>431</spage><epage>442</epage><pages>431-442</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><coden>GUTTAK</coden><abstract>Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS), the signals involved in acute pancreatitis. We used both isolated rat pancreatic mitochondria and intact acinar cells hyperstimulated with cholecystokinin-8 (CCK-8; in vitro model of acute pancreatitis). Results: Micromolar amounts of Ca2+ depolarised isolated pancreatic mitochondria through a mechanism different from the “classical” (ie, liver) mitochondrial permeability transition pore (mPTP). In contrast with liver, Ca2+-induced mPTP opening caused a dramatic decrease in ROS and was not associated with pancreatic mitochondria swelling. Importantly, we found that Ca2+-induced depolarisation inhibited cytochrome c release from pancreatic mitochondria, due to blockade of ROS production. As a result, Ca2+ exerted two opposite effects on cytochrome c release: Ca2+ per se stimulated the release, whereas Ca2+-induced depolarisation inhibited it. This dual effect caused a non-monotonous dose-dependence of cytochrome c release on Ca2+. In intact acinar cells, cytochrome c release, caspase activation and apoptosis were all stimulated by ROS and Ca2+, and inhibited by depolarisation, corroborating the findings on isolated pancreatic mitochondria. Conclusions: These data implicate ROS as a key mediator of CCK-induced apoptotic responses. The results indicate a major role for mitochondria in the effects of Ca2+ and ROS on acinar cell death. They suggest that the extent of apoptosis in pancreatitis is regulated by the interplay between ROS, ΔΨm and Ca2+. Stabilising mitochondria against loss of ΔΨm may represent a strategy to mitigate the severity of pancreatitis.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>18596195</pmid><doi>10.1136/gut.2007.147207</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2009-03, Vol.58 (3), p.431-442
issn 0017-5749
1468-3288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_4551464
source PubMed Central Free; MEDLINE; BMJ Journals - NESLi2
subjects Animals
Apoptosis
Apoptosis - physiology
Calcium - metabolism
Calcium Signaling
Cell Death - physiology
Cytochrome
Cytochromes c - metabolism
Gangrene
Membrane Potential, Mitochondrial - physiology
Mitochondria
Mitochondria - metabolism
Mitochondrial DNA
Mitochondrial Membrane Transport Proteins - metabolism
Pancreas - metabolism
Pancreas - physiology
Pancreatitis - metabolism
Pancreatitis - physiopathology
Permeability
Rats
Reactive Oxygen Species - metabolism
Rodents
title Mechanisms regulating cytochrome c release in pancreatic mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A48%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20regulating%20cytochrome%20c%20release%20in%20pancreatic%20mitochondria&rft.jtitle=Gut&rft.au=Odinokova,%20I%20V&rft.date=2009-03-01&rft.volume=58&rft.issue=3&rft.spage=431&rft.epage=442&rft.pages=431-442&rft.issn=0017-5749&rft.eissn=1468-3288&rft.coden=GUTTAK&rft_id=info:doi/10.1136/gut.2007.147207&rft_dat=%3Cproquest_pubme%3E66914223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1779344097&rft_id=info:pmid/18596195&rfr_iscdi=true