Mechanisms regulating cytochrome c release in pancreatic mitochondria
Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (R...
Gespeichert in:
Veröffentlicht in: | Gut 2009-03, Vol.58 (3), p.431-442 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Mechanisms of acinar cell death in pancreatitis are poorly understood. Cytochrome c release is a central event in apoptosis in pancreatitis. Here, we assessed the regulation of pancreatic cytochrome c release by Ca2+, mitochondrial membrane potential (ΔΨm), and reactive oxygen species (ROS), the signals involved in acute pancreatitis. We used both isolated rat pancreatic mitochondria and intact acinar cells hyperstimulated with cholecystokinin-8 (CCK-8; in vitro model of acute pancreatitis). Results: Micromolar amounts of Ca2+ depolarised isolated pancreatic mitochondria through a mechanism different from the “classical” (ie, liver) mitochondrial permeability transition pore (mPTP). In contrast with liver, Ca2+-induced mPTP opening caused a dramatic decrease in ROS and was not associated with pancreatic mitochondria swelling. Importantly, we found that Ca2+-induced depolarisation inhibited cytochrome c release from pancreatic mitochondria, due to blockade of ROS production. As a result, Ca2+ exerted two opposite effects on cytochrome c release: Ca2+ per se stimulated the release, whereas Ca2+-induced depolarisation inhibited it. This dual effect caused a non-monotonous dose-dependence of cytochrome c release on Ca2+. In intact acinar cells, cytochrome c release, caspase activation and apoptosis were all stimulated by ROS and Ca2+, and inhibited by depolarisation, corroborating the findings on isolated pancreatic mitochondria. Conclusions: These data implicate ROS as a key mediator of CCK-induced apoptotic responses. The results indicate a major role for mitochondria in the effects of Ca2+ and ROS on acinar cell death. They suggest that the extent of apoptosis in pancreatitis is regulated by the interplay between ROS, ΔΨm and Ca2+. Stabilising mitochondria against loss of ΔΨm may represent a strategy to mitigate the severity of pancreatitis. |
---|---|
ISSN: | 0017-5749 1468-3288 |
DOI: | 10.1136/gut.2007.147207 |