Critical waves and the length problem of biology

It is pointed out that the mystery of how biological systems measure their lengths vanishes away if one premises that they have discovered a way to generate linear waves analogous to compressional sound. These can be used to detect length at either large or small scales using echo timing and fringe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-08, Vol.112 (33), p.10371-10376
1. Verfasser: Laughlin, Robert B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is pointed out that the mystery of how biological systems measure their lengths vanishes away if one premises that they have discovered a way to generate linear waves analogous to compressional sound. These can be used to detect length at either large or small scales using echo timing and fringe counting. It is shown that suitable linear chemical potential waves can, in fact, be manufactured by tuning to criticality conventional reaction–diffusion with a small number substance. Min oscillations inEscherichia coliare cited as precedent resonant length measurement using chemical potential waves analogous to laser detection. Mitotic structures in eukaryotes are identified as candidates for such an effect at higher frequency. The engineering principle is shown to be very general and functionally the same as that used by hearing organs.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1422855112