Protective Effects of L-Carnitine Against Oxidative Injury by Hyperosmolarity in Human Corneal Epithelial Cells
L-carnitine suppresses inflammatory responses in human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. In this study, we determined if L-carnitine induces this protective effect through suppression of reactive oxygen species (ROS)-induced oxidative damage in HCECs. Primary HCECs wer...
Gespeichert in:
Veröffentlicht in: | Investigative ophthalmology & visual science 2015-08, Vol.56 (9), p.5503-5511 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | L-carnitine suppresses inflammatory responses in human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. In this study, we determined if L-carnitine induces this protective effect through suppression of reactive oxygen species (ROS)-induced oxidative damage in HCECs.
Primary HCECs were established from donor limbal explants. A hyperosmolarity dry-eye model was used in which HCECs are cultured in 450 mOsM medium with or without L-carnitine for up to 48 hours. Production of reactive oxygen species (ROS), oxidative damage markers, oxygenases and antioxidative enzymes were analyzed by 2',7'-dichlorofluorescein diacetate (DCFDA) kit, semiquantitative PCR, immunofluorescence, and/or Western blotting.
Reactive oxygen species production increased in HCECs upon substitution of the isotonic medium with the hypertonic medium. L-carnitine supplementation partially suppressed this response. Hyperosmolarity increased cytotoxic membrane lipid peroxidation levels; namely, malondialdehyde (MDA) and hydroxynonenal (HNE), as well as mitochondria DNA release along with an increase in 8-OHdG and aconitase-2. Interestingly, these oxidative markers were significantly decreased by coculture with L-carnitine. Hyperosmotic stress also increased the mRNA expression and/or protein production of heme oxygenase-1 (HMOX1) and cyclooxygenase-2 (COX2), but inhibited the levels of antioxidant enzymes, superoxide dismutase-1 (SOD1), glutathione peroxidase-1 (GPX1), and peroxiredoxin-4 (PRDX4). However, L-carnitine partially reversed this altered imbalance between oxygenases and antioxidant enzymes induced by hyperosmolarity.
Our findings demonstrate for the first time that L-carnitine protects HCECs from oxidative stress by lessening the declines in antioxidant enzymes and suppressing ROS production. Such suppression reduces membrane lipid oxidative damage markers and mitochondrial DNA damage. |
---|---|
ISSN: | 1552-5783 0146-0404 1552-5783 |
DOI: | 10.1167/iovs.14-16247 |