Altered Phenotype of β-Cells and Other Pancreatic Cell Lineages in Patients With Diffuse Congenital Hyperinsulinism in Infancy Caused by Mutations in the ATP-Sensitive K-Channel

Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the β-cell and other pancreatic lineages. Islets were disorganized in CHI-D c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2015-09, Vol.64 (9), p.3182-3188
Hauptverfasser: Salisbury, Rachel J, Han, Bing, Jennings, Rachel E, Berry, Andrew A, Stevens, Adam, Mohamed, Zainab, Sugden, Sarah A, De Krijger, Ronald, Cross, Sarah E, Johnson, Paul P V, Newbould, Melanie, Cosgrove, Karen E, Hanley, Karen Piper, Banerjee, Indraneel, Dunne, Mark J, Hanley, Neil A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the β-cell and other pancreatic lineages. Islets were disorganized in CHI-D compared with controls. PAX4 and ARX expression was decreased. A tendency toward increased NKX2.2 expression was consistent with its detection in two-thirds of CHI-D δ-cell nuclei, similar to the fetal pancreas, and implied immature δ-cell function. CHI-D δ-cells also comprised 10% of cells displaying nucleomegaly. In CHI-D, increased proliferation was most elevated in duct (5- to 11-fold) and acinar (7- to 47-fold) lineages. Increased β-cell proliferation observed in some cases was offset by an increase in apoptosis; this is in keeping with no difference in INSULIN expression or surface area stained for insulin between CHI-D and control pancreas. However, nuclear localization of CDK6 and P27 was markedly enhanced in CHI-D β-cells compared with cytoplasmic localization in control cells. These combined data support normal β-cell mass in CHI-D, but with G1/S molecules positioned in favor of cell cycle progression. New molecular abnormalities in δ-cells and marked proliferative increases in other pancreatic lineages indicate CHI-D is not solely a β-cell disorder.
ISSN:0012-1797
1939-327X
DOI:10.2337/db14-1202