The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression
Chemoresistance hinders the curative cancer chemotherapy. To define the role of the DNA methylation-regulated microRNA (miR) genes in the chemoresistance of bladder cancer, we performed both DNA methylomic and miRomic analyses of a multi-chemosensitive (5637) versus a multi-chemoresistant (H-bc) cel...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2014-09, Vol.5 (9), p.e1402-e1402 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemoresistance hinders the curative cancer chemotherapy. To define the role of the DNA methylation-regulated microRNA (miR) genes in the chemoresistance of bladder cancer, we performed both DNA methylomic and miRomic analyses of a multi-chemosensitive (5637)
versus
a multi-chemoresistant (H-bc) cell line and found that miR-193a-3p is hypermethylated/silenced in 5637 and hypomethylated/expressed in H-bc cells. A forced reversal of its level turned around the chemoresistance in the cultured cells and the tumor xenografts in nude mice. Three of its targets: SRSF2, PLAU and HIC2, work in concert to relay the miR-193a-3p’s impact on the bladder cancer chemoresistance by modulating the activities of the following five signaling pathways: DNA damage, Notch, NF-
κ
B, Myc/Max, and Oxidative Stress. In addition to the mechanistic insights in how the newly identified miR-193a-3p/SRSF2,PLAU,HIC2/five signaling pathway axis regulates the chemoresistance of bladder cancer cells, our study provides a new set of diagnostic targets for the guided personalized chemotherapy of bladder cancer. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/cddis.2014.367 |