Invasive bacterial pathogens exploit TLR-mediated downregulation of tight junction components to facilitate translocation across the epithelium
Streptococcus pneumoniae and Haemophilus influenzae are members of the normal human nasal microbiota with the ability to cause invasive infections. Bacterial invasion requires translocation across the epithelium; however, mechanistic understanding of this process is limited. Examining the epithelial...
Gespeichert in:
Veröffentlicht in: | Cell host & microbe 2011-05, Vol.9 (5), p.404-414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Streptococcus pneumoniae and Haemophilus influenzae are members of the normal human nasal microbiota with the ability to cause invasive infections. Bacterial invasion requires translocation across the epithelium; however, mechanistic understanding of this process is limited. Examining the epithelial response to murine colonization by S. pneumoniae and H. influenzae, we observed the TLR-dependent downregulation of claudins 7 and 10, tight junction components key to the maintenance of epithelial barrier integrity. When modeled in vitro, claudin downregulation was preceded by upregulation of SNAIL1, a transcriptional repressor of tight junction components, and these phenomena required p38 MAPK and TGF-β signaling. Consequently, downregulation of SNAIL1 expression inhibited bacterial translocation across the epithelium. Furthermore, disruption of epithelial barrier integrity by claudin 7 inhibition in vitro or TLR stimulation in vivo promoted bacterial translocation. These data support a general mechanism for epithelial opening exploited by invasive pathogens to facilitate movement across the epithelium to initiate disease. |
---|---|
ISSN: | 1931-3128 1934-6069 |
DOI: | 10.1016/j.chom.2011.04.012 |