Global stability of steady states in the classical Stefan problem for general boundary shapes
The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothnes...
Gespeichert in:
Veröffentlicht in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2015-09, Vol.373 (2050), p.20140284 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Had i & Shkoller 2014 Commun. Pure Appl. Math. 68, 689-757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes. |
---|---|
ISSN: | 1364-503X 1471-2962 |
DOI: | 10.1098/rsta.2014.0284 |