Antioxidant therapy in acute, chronic and post-endoscopic retrograde cholangiopancreatography pancreatitis: An updated systematic review and meta-analysis

To investigate the efficacy and adverse effects of antioxidant therapy in acute pancreatitis (AP), chronic pancreatitis (CP) and post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP). PubMed, Scopus, Google Scholar, Cochrane library database, and Evidence-based medicine/clinical tri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of gastroenterology : WJG 2015-08, Vol.21 (30), p.9189-9208
Hauptverfasser: Gooshe, Maziar, Abdolghaffari, Amir Hossein, Nikfar, Shekoufeh, Mahdaviani, Parvin, Abdollahi, Mohammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate the efficacy and adverse effects of antioxidant therapy in acute pancreatitis (AP), chronic pancreatitis (CP) and post-endoscopic retrograde cholangiopancreatography pancreatitis (PEP). PubMed, Scopus, Google Scholar, Cochrane library database, and Evidence-based medicine/clinical trials published before August 2014 were searched. Clinical and laboratory outcomes of randomized trials of antioxidant therapy in patients with AP, CP and PEP were included. The methodological quality of the trials was assessed by the Jadad score based on the description of randomization, blinding, and dropouts (withdrawals). The results of the studies were pooled and meta-analyzed to provide estimates of the efficacy of antioxidant therapy. Thirty four trials out of 1069 potentially relevant studies with data for 4898 patients were eligible for inclusion. Antioxidant therapy significantly reduced the length of hospital stay in AP patients {mean difference -2.59 d (95%CI: -4.25-(-0.93)], P = 0.002}. Although, antioxidant therapy had no significant effect on serum C reactive protein (CRP) after 5-7 d in AP patients [mean difference -9.57 (95%CI: -40.61-21.48, P = 0.55], it significantly reduced serum CRP after 10 d {mean difference -45.16 [95%CI: -89.99-(-0.33)], P = 0.048}. In addition, antioxidant therapy had no significant effect on CP-induced pain [mean difference -2.13 (95%CI: -5.87-1.6), P = 0.26]. Antioxidant therapy had no significant effects on the incidence of all types of PEP [mean difference 1.05 (95%CI: 0.74-1.5), P = 0.78], severe PEP [mean difference 0.92 (95%CI: 0.43-1.97), P = 0.83], moderate PEP [mean difference 0.82 (95%CI: 0.54-1.23), P = 0.33], and mild PEP [mean difference 1.33 (95%CI: 0.99-1.78), P = 0.06]. Furthermore, while antioxidant therapy had no significant effect on serum amylase after less than 8 h sampling [mean difference -20.61 (95%CI: -143.61-102.39), P = 0.74], it significantly reduced serum amylase close to 24-h sampling {mean difference -16.13 [95%CI: -22.98-(-9.28)], P < 0.0001}. While there is some evidence to support antioxidant therapy in AP, its effect on CP and PEP is still controversial.
ISSN:1007-9327
2219-2840
DOI:10.3748/wjg.v21.i30.9189