Cysteine cathepsins are essential in lysosomal degradation of α-synuclein
A cellular feature of Parkinson’s disease is cytosolic accumulation and amyloid formation of α-synuclein (α-syn), implicating a misregulation or impairment of protein degradation pathways involving the proteasome and lysosome. Within lysosomes, cathepsin D (CtsD), an aspartyl protease, is suggested...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-07, Vol.112 (30), p.9322-9327 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A cellular feature of Parkinson’s disease is cytosolic accumulation and amyloid formation of α-synuclein (α-syn), implicating a misregulation or impairment of protein degradation pathways involving the proteasome and lysosome. Within lysosomes, cathepsin D (CtsD), an aspartyl protease, is suggested to be the main protease for α-syn clearance; however, the protease alone only generates amyloidogenic C terminal-truncated species (e.g., 1–94, 5–94), implying that other proteases and/or environmental factors are needed to facilitate degradation and to avoid α-syn aggregation in vivo. Using liquid chromatography–mass spectrometry, to our knowledge, we report the first peptide cleavage map of the lysosomal degradation process of α-syn. Studies of purified mouse brain and liver lysosomal extracts and individual human cathepsins demonstrate a direct involvement of cysteine cathepsin B (CtsB) and L (CtsL). Both CtsB and CtsL cleave α-syn within its amyloid region and circumvent fibril formation. For CtsD, only in the presence of anionic phospholipids can this protease cleave throughout the α-syn sequence, suggesting that phospholipids are crucial for its activity. Taken together, an interplay exists between α-syn conformation and cathepsin activity with CtsL as the most efficient under the conditions examined. Notably, we discovered that CtsL efficiently degrades α-syn amyloid fibrils, which by definition are resistant to broad spectrum proteases. This work implicates CtsB and CtsL as essential in α-syn lysosomal degradation, establishing groundwork to explore mechanisms to enhance their cellular activity and levels as a potential strategy for clearance of α-syn. |
---|---|
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1500937112 |