Ribozyme-Mediated Reversal of the Multidrug-Resistant Phenotype
This study examined the effects of suppressing c-fos oncogene expression on multidrug resistance (MDR). A2780S human ovarian carcinoma cells with resistance to actinomycin D were isolated and the resultant A2780AD cells exhibited the MDR phenotype. A hammerhead ribozyme designed to cleave fos RNA cl...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1994-11, Vol.91 (23), p.11123-11127 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study examined the effects of suppressing c-fos oncogene expression on multidrug resistance (MDR). A2780S human ovarian carcinoma cells with resistance to actinomycin D were isolated and the resultant A2780AD cells exhibited the MDR phenotype. A hammerhead ribozyme designed to cleave fos RNA cloned into the pMAMneo plasmid was transfected into A2780AD cells. Induction of the ribozyme resulted in decreased expression of c-fos, as well as that of the MDR gene (mdr-1), c-jun, and mutant p53. The transformants displayed altered morphology and restored sensitivity to chemotherapeutic agents comprising the MDR phenotype. An antimdr ribozyme separately expressed in A2780AD cells efficiently degraded mdr-1 mRNA. However, reversal of the MDR phenotype by the anti-mdr ribozyme occurred one-fourth as rapidly as that induced by the anti-fos ribozyme. These results reinforce the central role played by c-fos in drug resistance through its participation in signal transduction pathways. |
---|---|
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.91.23.11123 |