Application of Multi-Species Microbial Bioassay to Assess the Effects of Engineered Nanoparticles in the Aquatic Environment: Potential of a Luminous Microbial Array for Toxicity Risk Assessment (LumiMARA) on Testing for Surface-Coated Silver Nanoparticles

Four different manufactured surface-coated silver nanoparticles (AgNPs) with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (Lum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2015-07, Vol.12 (7), p.8172-8186
Hauptverfasser: Jung, YounJung, Park, Chang-Beom, Kim, Youngjun, Kim, Sanghun, Pflugmacher, Stephan, Baik, Seungyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four different manufactured surface-coated silver nanoparticles (AgNPs) with coating of citrate, tannic acid, polyethylene glycol, and branched polyethylenimine were used in this study. The toxicity of surface-coated AgNPs was evaluated by a luminous microbial array for toxicity risk assessment (LumiMARA) using multi-species of luminescent bacteria. The salt stability of four different AgNPs was measured by UV absorbance at 400 nm wavelength, and different surface-charged AgNPs in combination with bacteria were observed using scanning electron microscopy (SEM). Both branched polyethylenimine (BPEI)-AgNPs and polyethylene glycol (PEG)-AgNPs were shown to be stable with 2% NaCl (non-aggregation), whereas both citrate (Cit)-AgNPs and tannic acid (Tan)-AgNPs rapidly aggregated in 2% NaCl solution. The values of the 50% effective concentration (EC50) for BPEI-AgNPs in marine bacteria strains (1.57 to 5.19 mg/L) were lower than those for the other surface-coated AgNPs (i.e., Cit-AgNPs, Tan-AgNPs, and PEG-AgNPs). It appears that the toxicity of AgNPs could be activated by the interaction of positively charged AgNPs with the negatively charged bacterial cell wall from the results of LumiMARA. LumiMARA for toxicity screening has advantageous compared to a single-species bioassay and is applicable for environmental samples as displaying ranges of assessment results.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph120708172