Landau level splitting in Cd3As2 under high magnetic fields

Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2015-07, Vol.6 (1), p.7779-7779, Article 7779
Hauptverfasser: Cao, Junzhi, Liang, Sihang, Zhang, Cheng, Liu, Yanwen, Huang, Junwei, Jin, Zhao, Chen, Zhi-Gang, Wang, Zhijun, Wang, Qisi, Zhao, Jun, Li, Shiyan, Dai, Xi, Zou, Jin, Xia, Zhengcai, Li, Liang, Xiu, Faxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd 3 As 2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry. Dirac semimetals have been proposed as parent materials for other topologically non-trivial phases such as Weyl semimetals, achieved by the breaking of time reversal symmetry. Here the authors use transport measurements to evidence such behaviour in single crystal Cd 3 As 2 under an applied magnetic field.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms8779