Biogeography and evolution of a widespread Central American lizard species complex: Norops humilis, (Squamata: Dactyloidae)

Caribbean anole lizards (Dactyloidae) have frequently been used as models to study questions regarding biogeography and adaptive radiations, but the evolutionary history of Central American anoles (particularly those of the genus Norops) has not been well studied. Previous work has hypothesized a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC evolutionary biology 2015-07, Vol.15 (1), p.143-143, Article 143
Hauptverfasser: Phillips, John G, Deitloff, Jennifer, Guyer, Craig, Huetteman, Sara, Nicholson, Kirsten E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Caribbean anole lizards (Dactyloidae) have frequently been used as models to study questions regarding biogeography and adaptive radiations, but the evolutionary history of Central American anoles (particularly those of the genus Norops) has not been well studied. Previous work has hypothesized a north-to-south dispersal pattern of Central American Norops, but no studies have examined dispersal within any Norops lineages. Here we test two major hypotheses for the dispersal of the N. humilis/quaggulus complex (defined herein, forming a subset within Savage and Guyer's N. humilis group). Specimens of the N. humilis group were collected in Central America, from eastern Mexico to the Canal Zone of Panama. Major nodes were dated for comparison to the geologic history of Central America, and ancestral ranges were estimated for the N. humilis/quaggulus complex to test hypothesized dispersal patterns. These lineages displayed a northward dispersal pattern. We also demonstrate that the N. humilis/quaggulus complex consists of a series of highly differentiated mitochondrial lineages, with more conserved nuclear evolution. The paraphyly of the N. humilis species group is confirmed. A spatial analysis of molecular variance suggests that current populations are genetically distinct from one another, with limited mitochondrial gene flow occurring among sites. The observed south-to-north colonization route within the Norops humilis/quaggulus complex represents the first evidence of a Norops lineage colonizing in a south-to-north pattern, (opposite to the previously held hypothesis for mainland Norops). One previously described taxon (N. quaggulus) was nested within N. humilis, demonstrating the paraphyly of this species; while our analyses also reject the monophyly of the Norops humilis species group (sensu Savage and Guyer), with N. tropidonotus, N. uniformis, and N. marsupialis being distantly related to/highly divergent from the N. humilis/quaggulus complex. Our work sheds light on mainland anole biogeography and past dispersal events, providing a pattern to test against other groups of mainland anoles.
ISSN:1471-2148
1471-2148
DOI:10.1186/s12862-015-0391-4