A Derivative of the Thiopeptide GE2270A Highly Selective against Propionibacterium acnes

A chemical derivative of the thiopeptide GE2270A, designated NAI003, was found to possess a substantially reduced antibacterial spectrum in comparison to the parent compound, being active against just a few Gram-positive bacteria. In particular, NAI003 retained low MICs against all tested isolates o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial agents and chemotherapy 2015-08, Vol.59 (8), p.4560-4568
Hauptverfasser: Fabbretti, Attilio, He, Cheng-Guang, Gaspari, Eleonora, Maffioli, Sonia, Brandi, Letizia, Spurio, Roberto, Sosio, Margherita, Jabes, Daniela, Donadio, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A chemical derivative of the thiopeptide GE2270A, designated NAI003, was found to possess a substantially reduced antibacterial spectrum in comparison to the parent compound, being active against just a few Gram-positive bacteria. In particular, NAI003 retained low MICs against all tested isolates of Propionibacterium acnes and, to a lesser extent, against Enterococcus faecalis. Furthermore, NAI003 showed a time- and dose-dependent killing of both a clindamycin-resistant and a clindamycin-sensitive P. acnes isolate. Gel shift experiments indicated that, like the parent compound, NAI003 retained the ability to bind to elongation factors Tu (EF-Tus) derived from Escherichia coli, E. faecalis, or P. acnes, albeit with reduced efficiency. In contrast, EF-Tus derived from the NAI003-insensitive Staphylococcus aureus or Streptococcus pyogenes did not bind this compound. These results were confirmed by in vitro studies using a hybrid translation system, which indicated that NAI003 can inhibit most efficiently protein synthesis driven by the P. acnes EF-Tu. P. acnes mutants resistant to NAI003 were isolated by direct plating. With one exception, all analyzed strains carried mutations in the tuf gene, encoding EF-Tu. Because of its selective effect on P. acnes in comparison to resident skin flora, NAI003 represents a promising candidate for the topical treatment of acne, which has already completed a phase 1 clinical study.
ISSN:0066-4804
1098-6596
DOI:10.1128/AAC.05155-14